Modular Protections Against
Non-control Data Attacks

Cole SCHLESINGER # Karthik PATTABIRAMAN P Nikhil SWAMY ©
David WALKER # Benjamin ZORN ¢

& Princeton University, Princeton, USA
> University of British Columbia, Vancouver, Canada
¢ Microsoft Research, Redmond, USA

Abstract. This paper introduces YARRA, a conservative extension to C to protect
applications from non-control data attacks. YARRA programmers specify their data
integrity requirements by declaring critical data types and ascribing these critical
types to important data structures. YARRA guarantees that such critical data is only
written through pointers with the given static type. Any attempt to write to critical
data through a pointer with an invalid type (perhaps because of a buffer overrun) is
detected dynamically. We formalize YARRA’s semantics and prove the soundness
of a program logic designed for use with the language. A key contribution is to
show that YARRA’s semantics are strong enough to support sound local reasoning
and the use of a frame rule, even across calls to unknown, unverified code. We eval-
uate a prototype implementation of a compiler and runtime system for YARRA by
using it to harden four common server applications against known non-control data
vulnerabilities. We show that YARRA successfully defends the applications against
these attacks. In our initial experiments, we find that the performance impact of
YARRA is small, provided the amount of critical data is small and the application
is not compute intensive.

Keywords. language-based security; non-control data attack; data integrity;
control-flow integrity; Hoare logic; frame rule; data isolation

1. Introduction

Most important applications contain components written in unsafe languages such as C
and C++. These components are vulnerable to a variety of memory corruption attacks.
To develop comprehensive protections for these unsafe components, it is essential to
identify wide, prominent classes of attacks, to analyze such classes mathematically, and
to implement and evaluate effective solutions against them.

One broad class of attack on unsafe programs is the control-based attack, in which
an attacker uses a memory corruption error, such as a buffer overflow or use-after-free,
to overwrite control-data such as a return address or function pointer and thereby modi-
fies the control-flow of the program. Through the early to mid 2000s, both industry and
academia developed mitigation techniques against control-data attacks. One particularly
noteworthy piece of work in this line of inquiry, due to Abadi et al. [1], developed a
formal model of control-flow integrity and used this model to prove the correctness of
defenses against a formal attacker.

In this paper, we analyze a separate class of attacks: non-control data attacks. These
attacks do not modify the control-flow of programs, but instead corrupt user identity data,
configuration data, user input data or decision-making data to achieve the attacker’s ends.
In 2005, Chen et al. [11] demonstrated that such non-control data attacks are a serious
threat against many real applications, including widely-used server programs. Since then,
due to the mitigations that have been developed against control-based attacks, the appeal
of non-control data attacks has increased [34].

In this paper, we set aside the problem of control-based attacks to focus squarely on
non-control data attacks. We formally define our attacker model in a core language in
which the adversary has no ability to subvert the control flow of the program and can only
mount attacks by corrupting non-control data. Mapping our formal model to practice
requires that our techniques be used in conjunction with defenses against control-flow
attacks. The following paragraphs summarize our key contributions.

A modular solution to non-control data attacks. Our solution takes the form of a lan-
guage extension to C, which we call YARRA. YARRA programmers introduce special
type declarations and ascribe the special types to their critical data structures—those
data structures upon which system reliability or security most depends. We call the spe-
cial types critical data types, and YARRA ensures that data with such types are impervi-
ous to non-control data attacks.

Critical data types help programmers specify an intended data integrity policy. Pro-
grammers further specify their data integrity intentions by choosing, in any given pro-
gram expression, fo use a pointer with a static critical type or not to use a pointer with
a static critical type. When accessing data through a pointer with a static critical type, a
programmer declares that she expects the underlying memory to have that same critical
type dynamically. When reading or writing through a pointer that, statically, does not
have a critical type, the programmer declares that she does not expect to be accessing
memory with dynamic critical type.

This design has a number of advantages. First, it is simple to understand and easy
to use. Every programmer is familiar with the concept that the underlying dynamic type
of a data structure should match the static type of the pointer. YARRA merely puts an
enforcement mechanism for this concept in place. Violation of this property, and the
subsequent unintended modification of a critical data type, is at the heart of all non-
control data attacks.

Second, our design supports adaptation of legacy code with minimal effort: type
declarations may be added to an existing code base, literally one at a time, incrementally
hardening a program against non-control data attacks.

Third, the design is highly modular in the sense that once a module is proved secure,
it may be linked with arbitrary, unverified library code, and that library will be unable
to wage a non-control data attack against it. In contrast, systems such as Cyclone [15],
CCured [26], Softbound [24] and others that rely upon conventional array-bounds check-
ing generally do not provide any guarantees whatsoever when there are buffer overruns
in unchecked libraries (Despite this limitation, array-bounds checking, like control-flow
integrity, remains a very useful technique).

Formal safety and modularity properties for YARRA. We provide an operational seman-
tics and a sound program logic for a core model of YARRA. The program logic defines
the formal or informal reasoning principles that programmers may use when analyzing
their YARRA programs. A key element of our logic is a new kind of type-based frame

rule. This frame rule allows components responsible for implementing security infras-
tructure to be verified independently of the unverified, possibly buggy and vulnerable
libraries that they are linked with. Despite such bugs and vulnerabilities, these libraries
cannot wage non-control data attacks against the verified security components. Conse-
quently, the frame rule codifies the modularity properties that YARRA programmers may
rely upon. The proof of soundness of our program logic, including this novel frame rule,
is the deep theoretical result of our work.

A formal definition of non-control data attacks. Inherent in our safety proof, and our
analysis of the frame rule, is a formal, language-based definition of non-control data
attacks. To be specific, a non-control data attack is any attack driven by a sequential,
imperative program with fixed, static control-flow and the license to attempt unlimited
reads and writes (including writes outside the normal bounds of data structures such
programs allocate). The attacks are waged against YARRA programs, which are also
defined to have fixed, static control flow. We limit the control constructs in our formal
model because that is the simplest, clearest way to define the essence of a non-control
data attack (as opposed to a control-based attack) and thereby to characterize the problem
and our solution. We leave an analysis of multi-threaded programs to future work.

Implementation of YARRA. The semantics of YARRA may be implemented in more than
one way. Different implementations have different performance trade-offs in terms of
time and space and different requirements in terms of access to source code for transfor-
mation. We have implemented a compiler and run-time system for YARRA that provides
two different runtime enforcement mechanisms. The first mechanism, called source pro-
tections, is inspired by previous work on Write Integrity Testing (WIT) [2], instruments
source code with dynamic checks that cannot be proven unnecessary at compile time.
The second mechanism, called targeted protections, inspired by previous work on Samu-
rai [29], makes copies of critical objects on separate pages. Prior to invoking untrusted
library code, the implementation turns off hardware write permissions on the designated
pages, thereby preventing unsafe libraries from corrupting critical data.

Experimental evaluation. We demonstrate the effectiveness of YARRA on a collection
of important server applications including SSH, telnet, HTTP and FTP with security-
sensitive data that may be vulnerable to non-control data attacks. These applications
typically contain, amongst thousands of lines of code, a relatively small, clearly defined
module, or set of modules that implement important security considerations and require
careful auditing—applications with this structure are best suited to the protections that
YARRA can provide. For these applications, we observe that our implementation has
negligible overhead relative to the end-to-end performance of the application as a whole.
This is because most of these applications are network intensive, and the amount of
critical data chosen is small. In addition, the programmer integration effort was on the
order of a few hundred modified lines of code or less in applications tens of thousands of
lines long.

For a more thorough, but artificial, measurement of the performance impact of
YARRA, we adapt BGET [37], a widely used memory manager, to use YARRA to protect
the allocator’s internal data structures from corruptions by the application. When used
in such a scenario, where a large number of data accesses involve critical data types, we
find that the performance overhead can be very substantial.

One conclusion we draw from these experiments is that our current prototype,
though completely unoptimized, is still capable of providing relatively low-overhead pro-

00NN N R W~

10
11
12
13

tection against non-control data attacks in typical server applications where the amount
of critical data that needs to be protected is relatively small.

Advancement over previous work. This work first appeared in the Computer Security
Foundations Symposium in June of 2011 [33]. We expand on that previous work in the
following ways:

e Semantics. Section 3 presents the full operational and static semantics of YARRA,
as well as supporting judgments and auxiliary functions. The conference version
of the paper was incomplete, presenting only selected rules and judgements.

e Proof sketch. Section 3.6 provides a more complete sketch of the soundness
proof for YARRA’s semantics. We have also provided a technical report ! with the
complete proofs.

e Implementation. Section 4 offers a more detailed description of the YARRA com-
piler, as well as a consideration of design trade-offs.

e Evaluation. Section 5 adds more evaluation results, supporting the discussion of
design considerations in Section 4.

2. YARRA by Example

Background. A non-control data attack occurs when security-critical data allocated on
the heap is unexpectedly modified. The display below shows code vulnerable to such
an attack. This example is drawn from Akritidis et al. [2] and was inspired by a true
nullhttpd attack.

Code vulnerable to a non-control data attack

I
static char cgiCmd[1024];
static char cgiDir[1024];
void ProcessCGIRequest(charx msg, int sz) {
int flag, i=0;
while (i < s2) {
cgiCmdl[i] = msgl[il; /buffer overrun here could overwrite cgiDir
++;

flag = CheckRequest(cgiCmd); /input sanitization

if (flag) {
Log("...™); /buggy library could invalidate sanitization
ExecuteRequest(cgiDir, cgiCmd);

I3

In this example, a request (msg) is copied into a new buffer called cgiCmd. Next, a
routine called CheckRequest checks that the command does not contain ”..””, which would
allow an attacker to navigate out of the designated directory and execute any program,
anywhere in the system. Finally, Log logs the request for future audits and ExecuteRequest
concatenates the command to the designated directory path and executes it. Unfortu-
nately, the routine is vulnerable when sz is larger than 1024. In this case, the copying
operation overflows from cgiCmd into cgiDir, allowing an attacker to effectively execute

any command in any directory on the user system. An additional concern is a potential

Thttp://research.microsoft.com/pubs/141972/yarraTR.pdf

time-of-check to time-of-use discrepancy in the code, that can be exploited, if, for ex-
ample, the call to Log has a buffer overflow that allows cgiCmd to be overwritten after
CheckRequest has been executed. Both of these vulnerabilities lead to non-control data
attacks because they do not change the control flow of the C program. Hence, they will
not be detected by mechanisms that check solely for control flow integrity.

There are two perspectives on this kind of attack:

® The conventional array-bounds perspective: The fault lies with the write opera-
tions at line 7 and within the implementation of Log, since they misimplement
indexing operations.

o The data integrity perspective: The fault lies in the definition and implementation
of the cgiDir and cgiCmd data structures, since they fail to protect themselves from
external agents.

These two different perspectives lead to different solutions with different engi-
neering considerations. The conventional perspective, taken by systems such as Soft-
Bound [24], leads one to maintain bounds on all data structures and to rewrite the code
for every data access. Consequently, it cannot be applied when library source code is
unavailable, e.g., if a function like Log were to make library calls. In such a situation, all
bets are off—a single missed bounds check may corrupt any data structure, anywhere in
the program. In contrast, the data integrity perspective leads one to maintain bounds only
for the high integrity (critical) data structures and indexing operations must be proven
not within the bounds of these structures. This alternative perspective leads to a different
set of implementation possibilities. For example, one may use conventional hardware
protections to prevent writes to critical data, while still allowing safe linking with un-
modified, possibly buggy libraries. We adopt the latter perspective in YARRA and show
how it can be used to harden code against non-control data attacks.

2.1. Hardening nullhttpd with YARRA

The main new abstraction that YARRA provides is the critical data type. Critical data
types have the rather unremarkable property that access to such data may only occur
through a pointer with a corresponding (static) type. Working with critical data types
demands a certain discipline. First, programmers must declare a critical type X . Having
done so, programmers can designate (or bless) portions of memory as containing X ob-
jects and, as a result, they obtain X -typed references. X -typed memory should only be
accessed using X -typed references. In return, YARRA ensures that the portions of mem-
ory that hold X-typed objects will never be corrupted by writes via untyped pointers,
or by the effects of library code. When finished with an X object, a programmer can
unbless a reference, undoing the protections on the referenced memory.

Programming with critical data types. The listing below shows how our example from
nullhttpd may be rewritten using YARRA'’s critical data types to foil both non-control
data attacks. On line 1, we introduce a new critical data type, cchar, using a declaration
much like C’s typical declaration for structures. The type cchar is a new YARRA struc-
ture containing a single character field named cc. The type dchar (line 2) is another crit-
ical type, also with a single character field dc. At line 3, we declare that every element
of cgiCmd is a cchar, meaning it can only be written by cchar pointers. Likewise, with
cgiDir and dchar, at line 4. Finally, we modify line 8, to access the cc field of the YARRA
structure, thereby indicating our clear intention to write to protected data.

0NN N R W=

YARRA'’s promise to programmers is that writes via non-critical pointers to memory
locations holding critical objects will always be detected. Because the types cchar and
dchar are unknown to Log and any library it may call, the functions use only non-critical
pointers, and hence YARRA guarantees that both cgiDir and cgiCmd are uncorrupted at
the call to ExecuteRequest. Further, at line 8, if there is a buffer overrun from cgiCmd
into cgiDir, YARRA detects the error because a pointer with static type ccharx attempts to
write to memory with (dynamic) YARRA type dchar. This illustrates the importance of
using different YARRA types for logically distinct data structures. If one were to use the
same type (say, cdchar) for both cgiCmd and cgiDir then YARRA would not prevent a buffer
overrun at line 8. In other words, structures that share the same type are not protected
from each other; they are only protected from structures with other types.

Using critical data types in nullhttpd

I
yarra struct {char cc;} cchar;
yarra struct {char dc;} dchar;
static cchar cgiCmd[1024];
static dchar cgiDir[1024];
void ProcessCGIRequest(char+ msg, int sz) {
int flag, i=0;
while (i < sz) {
cgiCmdli].cc = msglil; #/Yarra: cgiDir cannot be modified
i++;

)
flag = CheckRequest(cgiCmd);

if (flag) {
Log(". . ."); /Yarra: corruption of cgiDir, cgiCmd detected
ExecuteRequest(cgiDir, cgiCmd);

1}

Implementing YARRA protections. There are many ways to implement the protections
YARRA offers—our current implementation relies on two mechanisms. Using source
protections mode (inspired by WIT), our compiler uses the statically declared type of
pointers to instrument memory accesses with suitable checks. For example, the write to
cgiCmd on line 8 is checked at run time to ensure that the location to be modified is in-
deed of type cchar. Should such a check fail, the program will abort. Targeted protections
(inspired by Samurai) are suitable for situations in which code cannot be instrumented
with checks (e.g., when linking with third-party binaries) and rely on maintaining se-
cure copies of critical objects on separate memory pages. Prior to invoking potentially
buggy library code, such as the call to Log("...") on line 13, the YARRA runtime turns
off hardware write permissions on these pages to preserve their integrity. Writes from
untyped pointers to critical objects proceed without failure, but these writes only modify
one copy of the object, leaving the secure copy unchanged. In contrast, writes to critical
objects using well-typed references update both copies of the object. When a critical ob-
ject is read using a well-typed pointer, checks inserted by our compiler ensure that the
two versions of the object are identical, thus detecting potential corruptions.

Reasoning about YARRA programs. Regardless of the implementation chosen, with
both cgiCmd and cgiDir protected by YARRA, our semantics provides the programmer with
powerful, sound, local reasoning principles. Any invariant over the objects cgiCmd and
cgiDir is preserved across the call to the Log function, since Log is unable to modify criti-

cal memory locations. Additionally, an invariant on cgiDir (e.g., that cgiDir does not start
with “..”) is preserved across line 8, since YARRA ensures that the write to cgiCmd never
modifies a dchar object. We formalize this principle in Section 3 in terms of a type-based
frame rule and prove it sound.

2.2. Critical Data and Dynamic Allocation

Our first example illustrated a simple use case for YARRA in which a set of memory
locations have a single YARRA type for their entire lifetime. However, in order to handle
dynamically allocated data structures, or memory that is reused for different purposes,
we need a way to cast memory from one critical type to another.

In YARRA, memory pointed to by p is dynamically cast to a critical type T using the
operation bless(T)(p) and cast back using unbless(T)(p). It is an error to attempt to bless
memory protected at type T’ to another type T, unless T’ is a declared substructure of T.2
Likewise, it is an error to attempt to unbless memory from type T when that memory
location had not previously been blessed at T. These sorts of errors are detected at runtime
by the instrumentation inserted by our compiler. YARRA also provides the operation
isIn(T)(p), which returns true if p dynamically has type T and false if it does not. If p points
to memory which has been blessed at type T but which has been corrupted by a write via
an untyped pointer, YARRA causes the program to abort—this situation can be detected,
if, for example, the two copies of the T-object in question are not synchronized. Finally,
YARRA provides the command vacant(T)(p), which returns true if p points to completely
unprotected memory of size sizeof(T) and false otherwise.

Figure 1 shows a simple memory allocator that uses bless and unbless to protect its
metadata, hence increasing its reliability, even when linked against buggy clients. While
the allocator shown is extremely simple, we have used the same principles to protect
BGET [37], a standard, publicly available allocator for C.

The allocator relies on a few simple invariants (where i ranges from 0 to SIZE—1):
(1) the elements i of the meta array have critical type metaT, preventing a buggy client
program from modifying allocator meta data; (2) the meta array contains integers that are
either 0 or 1; (3) if metali] is 0 then datali] is not allocated and dynamically has critical type
unusedT, preventing a client from using it; and (4) if meta[i] is 1 then data[i] is allocated
and dynamically does not have critical type unusedT, allowing a client to use it as needed.

Given these invariants, consider the effects of the alloc and free routines. In alloc,
the code searches for a free cell (one with metalil.tag == 0), assigns the meta]i] tag to 1
(allocated state), and unblesses the cell, returning a pointer that the client may freely use.
In, free the code first checks that its argument is in range. If it is, it checks that the cell
has previously been allocated by the allocator and not yet freed (metali].tag == 1). Next, it
checks that the data is not still (erroneously) in use by another module at a protected type
by testing if data[i] is vacant (line 23). Finally, if all these checks succeed, the metadata is
set to unallocated and the data is blessed, protecting it from use by any other module.

When thinking about the correctness of alloc and free, the first thing to notice is that
if the informal invariants mentioned above are true at entry to either routine then they are
also true upon completion of the routine. More interesting still, the invariants (though
loosely stated) are phrased entirely in terms of protected state — i.e., in terms of static
global arrays, whose addresses may not be changed, in terms of protected memory, such

2 An illegal cast of this sort might invalidate protections supplied by T’.

0NN N R W=

=)

10
11
12

14
15
16
17

yarra struct {int tag;} metaT;
yarra struct {int junk;} unusedT;
union item {
unusedT unused;
int used;
I8
static metaT meta[SIZE];
static item data[SIZE];
int «alloc() {
int i;
for (i=0; i<SIZE; i++) {
if (metal[il.tag == 0) {
meta[il.tag = 1;
unbless(unusedT)(&datali].unused);
return data+i;

H}

abort("out of memory");

18 }

19
20
21
22
23
24
25
26
27
28
29

void free(int xdatum) {
if (datum >= data && datum < data+SIZE) {
int i = datum —data;
if (meta[il.tag==1) {
if (vacant{unusedT)(&datali])) {

metali].tag = 0;
bless(unusedT)(&datali].unused);
return;

b1}

abort("client error");

}

Figure 1. A simplified memory manager

as the contents of meta, and in terms of a locally quantified variable i — as opposed to
in terms of normal, vulnerable, heap-allocated data structures. Because these invariants
depend exclusively on protected state, no client module may corrupt them and hence,
according to the traditional hypothetical frame rule [28], if initialization (not shown)
makes them valid at the outset, it is sound for each routine to depend upon their continued
validity throughout the program. We do not, however, formalize this rule in the program
logic of Section 3.

3. Semantics of YARRA

This section defines YCORE, a sequential, imperative language intended to serve as a
core model for YARRA. This formal development serves two purposes. First, YCORE’s
semantics makes precise our attacker model: the attacker is represented by calls to un-
verified library code that may have arbitrary effects on the heap, but cannot alter the con-
trol flow of the program. Second, we define robustness in the presence of non-control
data attacks to be the ability to reason locally about critical data structures, even in the
presence of arbitrary heap effects caused by library code.

We formulate robustness, or modular local reasoning, in the context of a program
logic for YCORE programs and we show that this logic admits a frame rule. Unlike recent
presentations of the frame rule that require the use of separation logic [31], ours is in
the context of a classical Hoare logic and relies on the type structure of the program
for modular reasoning. In addition to its technical novelty, we argue that our type-based
approach provides a more familiar model for programmers already used to working with
types. Furthermore, unlike in other logics, YARRA’s dynamic protections make our frame
rule sound even in the presence of heap effects caused by unverified libraries. As such,
this frame rule captures the essence of YARRA’s modular protections against non-control
data attacks.

3.1. Syntax

Broadly speaking, YCORE is a simple while-language, augmented with critical type dec-
larations, and memory operations to manipulate critical memory. Figure 2 shows the syn-
tax of YCORE, starting with our meta variable conventions. Integer constants are i, j, ¢,
where, we generally use ¢ for memory locations. Local variables are x, y, z, and critical
data types (and their representations as maps) are X,Y, Z with H and Un being two
distinguished map names.

Expressions e are purely arithmetic terms, built from integer constants, integer variables
and primitive operators op. Values v are either integer constants ¢, or are structured tuples
(v1,v2) corresponding to the values of protected object types. Note, expressions do not
include tuples, ensuring that well-scoped expressions always evaluate to integers.

Basic statements include the usual forms for branching, looping, sequencing, assertions,
and scoped, local variable declarations, (local z in s). Local variables always hold integer
values, so no type is needed on the declaration of x. The statement form s also serves
as a multi-hole context, where the holes e, ..., e, represent points at which control
transfers to an attacker program. We write s[s;]; to replace hole 7 in s with s;. We write
s[s1,. .., sp] for the hole-free statement obtained by replacing each hole e; in s with
s;. We place specific conditions on the attacker code that can be used to fill a hole in
Section 3.5.

Critical type commands. The statement form (newtype X = 7 in s) allows us to define
a name X for a new critical type, where the representation of X is 7, and X can be
used in s. The statements for blessing and unblessing are slightly more general than what
was used in Section 2. Here, the command (y := blessx [e] en..) Operates on an array
of locations starting at the location ey, and including e objects each to be protected
at the type X (where e is expected to evaluate to a non-negative integer). The returned
value y is a reference to the start of the array of newly blessed objects. Analogously, the
command (y := unblessx [e] ep,.) TEmoves protections on an array of critical objects.
The dynamic typecase (if e isin X then s; else s3) statement is useful for modeling
the vacant command of Section 2.2, as well as other constructs—it can be used to check
whether a location e holds a critical object of type X.

Reading and writing memory. Y CORE includes two forms each of read and write in-
structions. A checked read (y := X (e).p) attempts to read a structured value v of type
X at the location e and projects a field from v using the path p, storing the result in the
local variable y. In contrast, an un-checked read instruction (lib y := e) reads the con-
tents of an arbitrary memory location e from the heap H into a local variable y. Simi-

integer const. N

local variables T, Y, 2

map names X,Y, Z H,Un

values v s= 1 (v1,v2)

expr. e = di|xz|eope

stmt./hole s == skip|if e then s; else so | while e s
sequence \ S1; 82

assertion | assert ®

local var. decl. | local z in s

local type decl. | newtype X = 7in s

bless e objs. starting at epqse ‘ y := blessx [e] €hase
unbless e objs. starting at epase | Yy := unblessx [€] epase

dynamic typecase | if e is in X then s else sg

checked read |y = X(e).p

un-checked read |liby:=e

checked write | X(e1).p:=e2

un-checked write \ libey :=eo

dynamic failure | abort

hole | o

field path p u= - |O0p|lp

types T = int]|(r,m) | X

map type T = ant—rT

map value 0 = M.é

map body € = Ll |v|dwv]|ifa € d thenéelseé

logic term @ = el|lv|é|o|X |ap|domal|{x]| P}

formula QU = OAV|[PVVUY|-D|Ved|VX:7.P
la=a |a€d |a<ad|True| False

substitution & w= o, [a/X]] o, [a/x]

mod. set A = - |AX Az

staticenv. T' = |, X7 | Dy

runtime env. £ E,x—i|E X — (0:7)
H — (0:7),Un — (0:7)

I E

eitherenv. &

Figure 2. Syntax of YCORE

larly, a checked write (X (e1).p := e2) attempts to write to a structured type using a field
assignment; un-checked writes (lib e; := e3) modify a single location e; in the heap,
overwriting its contents with es. We use the un-checked forms to model the actions of
arbitrary, untrusted code, e.g., third party libraries.

Failure modes. We model two failure modes in YCORE. Certain dynamic failures are
permitted by the logic, e.g., failures caused by the effects of untrusted libraries which
are detected by the runtime system. These failures cause a program to loop indefinitely
issuing the abort command—we expressly choose to allow such “safe” failures to occur
at run time since they are unavoidably triggered by the behavior of unverified library
code. Other failures, e.g., trying to bless a piece of memory that has already been blessed
at another type, or an assertion failure, cause the program to get stuck. YCORE’s logic is
designed to prevent stuck programs.

Types and the assertion language. The type language of YCORE includes int, pairs,

| yarra struct {int f0; int {1} x;|nEwtype X = (mt', mt? mn
2 yarra struct {X g0; int g1} Y; | newtype Y = (X int) in
3 main() { local z,y, z in

4 voidx z=malloc(sizeof(Y)); z:={;

5 X x=bless<X>(1, z); x := blessx[1] z;

6 Y y= bIess<Y>(z); Y= blessy [1] Z;

7 y.90.00=17; Y (y).00 := 17;

8 V0¥d * _=unbless<Y>(L,)| _.— unblessy (1] y;

9 void * _=unbless<X>(x); } _:= unblessx m .

Figure 3. Relating the syntax of YARRA to YCORE

and type names X. We model both C’s integers as well as pointers using the int type.
Structures in C, which contain an arbitrary number of named fields, are modeled using
nested pairs. We omit unions. The assertion logic of YCORE makes use of first-order
formulas ® over a term language including arithmetic expressions, tuples, maps and sets,
together with (extensional) equality, set membership, and integer inequality. Maps are
lambda-terms (A{.¢), with types described using the map types 7. The body (€) of a map
value is built from values v, an application form, a conditional form, and a distinguished
value | used to model partial maps.

Figure 3 illustrates how the concrete syntax of YARRA maps to YCORE. Struct dec-
larations correspond to declarations of tuple types. We do not include procedures in
Y CORE—the statement s can be thought of as the body of main. We also do not provide
primitive operations for dynamic memory allocation in YCORE—so the malloc call at
line 4 has no direct analog in YCORE. However, we model the heap as a total map over
integer locations and we can program malloc in YCORE.(This is not an unusual choice
in systems governed by classical logics. See, for example, work on Havoc [18].) In this
example, which will be reused later to illustrate the static semantics, we replace the call
to malloc with an abstract address ¢. Calls to bless and unbless in YARRA map directly
to YCORE. In cases (e.g., lines 6 and 9) where we omit the first argument to bless or
unbless, the argument defaults to 1.

Writes and field projections via object references in YARRA also map directly, as
shown on line 7. YCORE uses binary paths to the fields of tuples, instead of field names.
More importantly, while writes to objects via typed references in YARRA are evident
from the declared types (for example, the type Y« of y), in YCORE, the write instruction
itself is tagged with the type of the object that is the destination of the write. Typed read
instructions are similar. For convenience, our example hoists the local variable declara-
tions.

3.2. Auxiliary Judgements

Before we present the dynamic (§ 3.3) and static (§ 3.4) semantics of YARRA, we first
introduce and briefly discuss the auxiliary judgements on which the semantics—and the
soundness proof—rely.

We write - I'; A ok for the well-formedness of an environment—this judgment is
defined in Figure 5. Informally, well-formedness requires that all the names in A appear
in I'; that every name in I" be unique, and that every map type 7 in I' be well-formed.
Well-formedness of types is a simple structural relation, I' - 7 ok, essentially requiring
that every map name in 7 appear in I'.

well-typed terms, where t ::= 7 | 7 | int set

x € dom T’ I'tay:int T Faz:int
I'+4:nt I'ktx:iint I'taiopas:int

I'Far:mn T'hFas:m I'ka:(m,m) NX)=1
'k (a1,a2) : (11, 72) 'tai:7; '-X:7 T'-L1l:7

T'ka:int TFa :intset TrHo:int— T
' iFeé:T I'té:7 I'Féx:r I'kwv:int
LEME:int — T I'tifa € a thené; else éy : 7 FEdv:r

'kta:7 'z F ® ok 'k (ad)p:7 p#*-
T'F dom a : int set Tk {z | ®}: int set ThFadp: T

I' F ® ok | well-formed formulas

T'Fa:t TFa:t I'ta:int TFad :intset Vi.l' - a; : int
I'-a=ad ok I'a€a ok 'k a; < az ok

I'E ® ok I'F®ok Ik Wok I'F®ok Ik Wok
I'F—=® ok I'F®AWok I'F® Vv W¥ok

T,z ® ok T, X:7 - ® ok T,z ®ok T, X:# - ® ok
I F Vz.® ok T VX:7.® ok T+ 3z.® ok T'F 3X:7.® ok

Figure 4. Well-typed terms and well-formed formulas

well-formed types

X edomT 'm0k T'F7eok
I+ int ok '+ X ok 't (11, 72) ok
well-formed bindings
T'ok z¢domT T'ok X¢&domT TF7Tok
F - ok F T,z ok T, X:7 ok
F I'; A ok | well-formed environment
F T ok FT:Aok z€domDT x¢A
FT;- ok FI; A,z ok

Figure 5. Well-formed types, bindings, and environments

Next, we define a notion of well-formed formulas, I' = ® ok, analogous to the
well-formed relation on types. A related notion is a typing judgment for terms a, written
I' a : t—both of these judgments are defined in Figure 4. The types ¢ given to terms
are either basic types 7, map types 7, or a type of sets of locations inf set. The latter
type is only used within the metatheory and is never explicitly manipulated by source

Y CORE programs. Typing of terms is quite straightforward, and given this relation, well-
formedness of formulas is also easy—note, the two relations are mutually recursive to
handle the set-comprehension term construct {z | ®}.

store typing

Fo:int —int =V0LE domD FE:('2,) Fov:int EE:T
F (H — (0:int — int)) : (H:int — int) FE:('1,I) FE (z—wv): T,z

T Fo:int —>int +HE:T E=(Hw— (0:7))
T, X7 F E, (Unw— (0:int — int)) : T, Un:int — int

Figure 6. Store typing

Another auxiliary notion is the typing of stores E. We write this judgment - E : T,
and define it in Figure 6. Note that every store F includes a heap H. The first rule
checks that the heap value is indeed a well-typed total map, i.e., its second premise,
= VI.I € dom 0, relies on the interpretation of formulas to require that every location
is indeed in the domain of the heap. Every store also contains the Un partial map—its
typing rule is the last one. The other rules are straightforward.

Finally, we turn to the interpretation of formulas ® in the context of a store FE,
written E |= ®. This judgment relies on the interpretation of terms a in the same context,
given by the function [a] g. Both of these are defined in Figure 7. As is usual, we lift the
interpretation of formulas E' |= ® into a static notion of formula derivability, I" = ®, by
requiring that ® be derivable in all stores E that are typeable by I'.

3.3. Dynamic Semantics

Figure 8 shows the key dynamic semantics of YCORE. The semantics is a small-step re-
duction relation of the form (E; s) ~ (E’; "), where (E, s) is called a run-time configu-
ration. Such configurations contain run-time environments E and hole-free statements s.
Runtime environments E contain integer assignments for local variables (z +— 7);
a typed map value (9:7) for each critical type X defined in the program (X +— 9:7); a
map value for the conventional heap (H — ©:7); and, finally, a map value for Un, the
collection of unblessed locations (Un — ©:7). We call each map value ¢ in F a heaplet.
The heaplet for a critical type X corresponds roughly to the backing store for X -typed
objects. Note, we overload the use of type names X also for the heaplets that contain
X -typed values. This is a technical convenience which helps keep our notation light. We
model the critical heaplets formally as partial maps from memory addresses to X -typed
objects, i.e., in a well-formed environment containing X + (9:7), ¥ is a partial map
of type 7, where 7 = int — X. The heap H is a total map from memory addresses
to integers (i.e., it has type int — int), while Un is a partial map of type int — int.
The totality of the H-map is simply a technical convenience—we could, with a little
additional book-keeping, allow H to be a partial map.
Auxiliary functions. Figure 10 defines auxiliary functions used in the dynamic seman-
tics, and Figure 11 defines auxiliary functions used throughout both the static and dy-
namic semantics. Auxiliary functions used solely in the static semantics (presented in

interpretation of terms

[z]e = E(z)

[X]e = B(X)

[vle =v

[0] & =0

[a.0] & = v when [a]g = (vo,v1)
[[a.l]]E = U1 when [[GHE = (Uo, Ul)
[a-ip] & = [[a-i]&-p] & when p # -
[Mz.€ () = [é[¢/x]] e

[ifa € o’ then éelse '] = [é] & when [a] & € [a']&
[ifa € o' then éelse &']r = [¢'] g when [a]E € [@'] &

Hz [©}]e ={v[E & Pv/z]}
[dom a] & =[{l|al+#L}E
interpretation of formulas

E = True

EE-9 <= F = ®isinvalid
E‘|:<I>1/\<I>2<:}E|:<I>1andE|:<I>2
E|:‘1>1\/(I)2<:>E|:¢‘1OI'E|:¢)Q

E E=Vz.® <= forallintegers i, F |= ®[i/z]

E = VX:7.® <= for all map values 0:7, E |= ®[0/X]

EE3x.® <« forsome integer i, E |= ®[i/x]

E = 3X:7.® <= for some map value 0:7, E |= ®[0/X]

E a1 =as < [Jai]e = [a2]E when-E :TandT'Fa;: 7
EEa =a <= VI.EE[ai]el=[a]E! whenF FE:T"andI'Fa; : 7
E |:a1 € ay <— [[aﬂ]E S [[az]]E

E |:a1 < ay < [[Lh]]E < [[ag]]E

I' =® <= forall Esuchthat- E : T', we have £ |= ®

Figure 7. Interpretation of terms and formulas

Figure 13) are discussed in Section 3.4. These functions are straightforward, although
a few comments are worthwhile. First, note that most of our auxiliary functions carry
indexes (subscripted) that represent environment arguments. For example, [¢] is a stan-
dard denotational semantics for expressions, defined relative to the assignments of local
variables in E. Some function symbols are indexed either by runtime environments £ or
static environments I'. This allows us to overload function symbols for use in both the
static and dynamic semantics. For example, dom X, used in the dynamic semantics,
concretely represents the domain of a map X as the set of locations on which X does not
evaluate to L. Statically, domp(X) is simply a term dom X in the logic. Many of the
functions in Figure 11 are parametric in their environment index—these functions carry
the index &, where £ may be either F or I'.

A brief description of each of the auxiliary functions in Figure 10 follows: E[X +
0] updates the map named X in E to contain 0; blessed L X asserts that every location
£ in L resides in the domain of the map X in E; inSyncy ¢ X asserts that values in the

T =1t =T
(E;newtype X = 7in s) ~ (E, X — (M.L:7);s)

E-NewX

- - E-NewLoc
(E;local z in s) ~ (E,z — 45 5)

[ei]le =n [e2]e =¢ L =Up<icnll +1X|E %14} T = rangep X
Ey = chkAndRemp 7 L E> = copyy, L from H to X E = updUnp, LT L

n - E-Bless
(E;y = blessx[e1] e2) ~ (E'[y — £]; skip)
[ei]e =n [e2]e = ¢ L=Upcicn{l+1X|E*i} T =rangep X
Ey = chkAndRemp X L E3 = copyp, Lfrom HitoT E' = updUng, L1
E-UnBless

(E;y := unblessx [e1] e2) ~ (E'[y — £]; skip)

lealle=n [e2]e=¢ L={{....(0+|X|e*(n—1))}
T = rangep X chkAndRemg 7 L. = notSync

(E;y :=Dblessx[e1] e2) ~ (F;abort)

E-Bless-Abort

leale=n [e2de=¢ L={(....,(0+|X[e*(n—1))}
T = rangep X chkAndRemr X L = notSync

(F;y := unblessx [e1] e2) ~ (F; abort)

E-UnBless-Abort

leile =4 [e2]e =v E(H)=4%47 FE = E[Hw— (3[¢ <+ v]:7)]
(E;lib eq := e3) ~ (E’';skip)

E-LibWr

le]le = ¢ L€ dompX
lei]le =¢ E' = E[ly— Hg(0)] Xg(f) # readFromg H (£:X)

E-LibRd
(E;liby := e1) ~ (E; skip) ' (E;y = X(e).p) ~ (E;abort)

E-RdAbort

[ei]le =€ L€ domeX —inSyncy £ X
(E; X (e1).p := e2) ~ (E;abort)

E-WrAbort

p#- [ei]le=¢ LedomgX Xg({)=readFromg H ({:X)
0 =1+ offsety X p E' = Ely— Hg({")]

T E-Rd
(E;y := X(e1).p) ~ (E'; skip)
pF#- [ei]e =¢ [e2]e = v € dompX
Xg(f) = readFromg H (¢:X) E(H) =7 { ={+offsety X p
Ei = E[H — (03[0’ + v]:7)] E'" = copyp, {£} from H 10 X
E-Wr

(E; X (e1).p := e2) ~ (E';skip)

lele =¢ £€ domeX inSyncy £ X

- E-IsX-Then
(E;if eisin X then s; else s2) ~ (E; s1)
={ (&d X
- .[[e.]] e g dom E-IsX-Else
(E;if eis in X then s1 else s2) ~ (F; s2)
ele =¢ (€ domgX —inSyncgp X
le] = r batd E-IsX-Abort

(E;if eisin X then s1 else s2 ~ (F; abort)

Figure 8. (E;s) ~ (E’; s’): Dynamic semantics of YCORE (Selected rules)

[e]e #0 [e]le =0

(E;if e then s else s2) ~ (E;s1) (E;if e then s else s2) ~ (Ej; s2)
[e]= =0 [e]= #0
(E; while e s) ~ (E; skip) (E; while e s) ~ (F; (s; while e s))

(E;s1) ~ (E';51)

(E; (515 82)) ~ (B (515 52)) (E; (skip; s2)) ~ (Ej s2)
EE®
(E; assert @) ~ (E; skip) (E; abort) ~~ (E};abort)

Figure 9. (E;s) ~ (E’;s’): Dynamic semantics of YCORE (Standard rules)

map X in E match the heap at location ¢ (or all locations in a set L); copy-from-to copies
values between maps; chkAndRem removes locations from a critical map, provided every
location is blessed and in sync with the heap; updUn adds locations to Un. The latter
functions make use of the correspondence between type and map names, where E con-
tains maps with the same names as new types X, Y, Z; thus, these functions structurally
recurse on the T'ype parameter to effect changes in the corresponding maps.

From Figure 11, X¢(¢) is the value of the map X at the location ¢; a,,[a + a']
updates the map a,,, at location a to contain a’; rangeg X is the range type of a map; |7|¢
represents the size (in machine words) of a value v of type 7; offsetc T p is the offset of
a field accessed via the path p in the type 7; readFromg X (¢:7) reads a structured value
at location £ of type 7 from the map X. Note that offset T p is a partial function, e.g.,
offsete ((int,int), int) 0 is undefined. This ensures that only word-length int-valued
fields in a nested tuple type can be directly addressed. Second, readFrome Y (£:7) is used
to read a structured value of type 7 from the location ¢ in the map Y. While this function
is well-defined for arbitrary maps Y, we use it primarily to read structured values out of
the flat heap map H.

We turn now to a discussion of the key rules in Figure 8.

Heaplets for new critical types. The rule (E-NewX) shows the initialization of an empty
heaplet (everywhere L) for a new critical type X. Structured values corresponding to the
objects of the critical type X are added to the X heaplet whenever the program issues
a bless command; values are removed from the heaplet when unblessed. As such, the
heaplet X serves as a backing store for X values.

Bless statements. The rule (E-Bless) shows the reduction of a bless operation for a crit-
ical type X. We evaluate the pure expression e to an integer n and es to a location ¢,
specifying that an array of n objects should be blessed with type X, starting at ¢. Values
in the heap at the locations in this range are copied into the heaplet X. The type X may
contain fields that themselves have critical types, and so to preseve the invariant that lo-
cations belong to at most one critical heaplet, we employ chk AndRem to check that cor-
responding locations in the critical heaplets of any such fields are in sync with the heap
and, if so, remove those locations. (E-Bless-Abort) shows the failure of chk AndRem,
which may occur if the heap and one of the heaplets are out of sync. Finally, the Un map
is updated to reflect the transfer of locations into the critical map X.

E[X + 4] = B1, X — (8:7), Es
when E = E1, X — (0:7), E2
blessedg L X =Vl e LtlecdompX

inSync : (Env % Loc x Map) — Prop

inSync £ Un = True
inSyncg £ X = Xg(¢) = readFromg H (£:X)
when X # Un
inSyncp L X =Vl e L. Xg(l) = readFromg H (¢:X)
when X # Un
copy-from-to : (Env x Locs x Map « Type) — Env
copyy L fromY to int =F
copyg L fromY to X = E[X + (M.if £ € L then readFromg Y (£:X) else X (£))]

copyp L fromY to (11, 72) =let Ey = copyy L fromY to 11 in
let L1 = {Z-i— |7’1|E1 | le L} in
copyg, L1 fromY to T2

chkAndRem : (Env x Type x Locs) — (Env U notSync) (partial function)

chkAndRemp X L = notSync
when blesseds L X N —inSyncy, L X
chkAndRemg X L = E[X «+ AL.if ¢ € L then L else (X¢)]
when blesseds L X AinSyncy L X
chkAndRempg int L =F
when L C domgUn
chkAndRemg (11, 72) L = let E1 = chkAndRemg 11 L in

let L1 = {Z-i— |7'1|E1 | le L} in
chkAndRempg, T2 L

updUn : (Env x Locs * Type x MapBody) — (Env)

updUng L int é = E[Un + M.if £ € L then é else Un /]
updUny L X € =F
updUng L (11, 72) € =let By = updUng L 1 éin

let L1 = {£+ |7'1|E1 |1€ S L} in
updUng, L1 €

Figure 10. Auxiliary functions used in dynamic semantics only

Unbless statements. The (E-Unbless) and (E-Unbless-Abort) rules are dual to (E-Bless)
and (E-Bless-Abort), causing values to be removed from the heaplet X and failing if
those values are not in sync with the heap. If X contains critically-typed fields, then
fresh values are copied from the heap into the corresponding heaplets. This propagates
any changes effected to those locations while they were blessed as part of the X -typed
object. Finally, fields without critical types are added to the Un map.

Un-checked reads and writes. The rule (E-LibRd) shows the reduction of a read opera-
tion performed by untrusted code. We evaluate the pure expression e to a location ¢, and
update the local variable y in the environment to hold the value in the heap H at location
{. (E-LibWr) is also unsurprising—we simply update the heap H at the location ¢ to the
value v. The important aspect of these rules is that library reads and writes only have

dompX ={l| Xe(¥) # L}

domr X = dom X

rangep X =7 when E(X) = (0:int — 1)
ranger X =7 whenT'(X) = int —> 7
XE(0) = [0 ¢]r when E(X) = (0:7)
Xr(0) =X/

amla < a' = M.if £ € {a} then @’ else (am £)
|int|g =1

[Yle = |range¢ Ye

[(T1,72)e = |11le + |2|e

offsetg int - =0

offsetg (11, 72) Op = offsetg T1 p

offsetg (11,72) 1p = |T1|e + offsetg T2 p

offsete Y p = offsetg (rangeg Y) p
readFromg Y (£:int) =Ye(0)

readFromg Y (¢:7) = readFromg Y ({:(rangeg Z))

readFromg Y (0:(11,72)) = (v1,v2)
where v1 = readFromg Y (0:11)
and wv2 = readFrome Y ((£ + |71|e):72)

Figure 11. Auxiliary functions used in both static and dynamic semantics

effect on the heap H and on local variables in scope, but never update the heaplets for
any critical type X. It is possible to implement this semantics for un-checked writes in
multiple ways. For example, in its targeted protection mode, our compiler uses hardware
page protections to maintain the integrity of critical heaplets.

Checked reads. Although library instructions cannot modify the critical heaplets, errant
writes by a library can corrupt a critical object stored in the heap. We use the backing
store provided by the critical heaplets to detect such corruptions and abort the program,
if necessary. The rules (E-RdAbort) and (E-Rd) show this behavior. When reducing y :=
X (e).p we evaluate e to a location ¢ and check that £ is a reference to a blessed object. A
failure of this first check causes the configuration to get stuck, a situation prevented by
the static semantics. Next, we check that the value in the backing store X at location ¢
matches the value stored in the heap at the same location. If this check fails, the program
aborts. Otherwise, we compute the offset of the field being read, and update the local y
with the contents of the field.

Note that as shown here, since the critical heaplet for X always holds an uncor-
rupted value, we might recover from a corruption instead of aborting. However, we aim
to provide an abstract semantics for YCORE that is independent of the specific choice of
implementing critical heaplets. In particular, rather than storing copies of objects in the
critical heaplets, we may wish to use our compiler’s source protection mode, or to resort
to other forms of protections that, say, only maintain checksums or cryptographic digests
rather than full shadow copies. Such implementation strategies allow memory corruption
to be detected, but may not support recovery. By allowing (E-RdAbort) to fail when a
corruption is detected, we provide YARRA with the flexibility to choose among various
implementation strategies.

Checked writes. (E-Wr) shows the reduction of an instruction that writes via an X -typed
reference. As for checked reads, we ensure that the location being written to is in the do-
main of the X heaplet (otherwise the configuration is stuck) and check, using the backing

store, that the critical object being modified is uncorrupted (and abort otherwise, using
(E-WrtAbort) a rule analogous to (E-RdAbort)). We then update H at the appropriate lo-
cation and offset, and, importantly, in the last premise, we copy the updated object from
the heap into the critical heaplet X. Thus, abstractly, writes through typed references
correspond to a pair of writes, both to the heap and to the critical object’s shadow copy.
However, the YARRA implementation may or may not actually manifest the update to
the shadow copy, e.g., when using our source protection mode.

Intuitively, one can imagine that Y CORE programs enjoy a measure of data integrity,
since copies of critical objects are maintained in uncorruptible backing stores. The next
section makes this notion of data integrity precise. Specifically, we show that despite
the presence of arbitrary heap modification by untrusted code, programmers can reason
about the invariants of critical objects using modular, local reasoning principles. The
crux of this idea is embodied by the frame rule in a program logic for Y CORE, presented
next.

3.4. Static Semantics

The static semantics of YCORE is given by the relation T'; A F {®} s {U}, a classical
Floyd-Hoare logic judgment. The judgment states, informally, that when executed in an
environment £ modeled by the context I', and when E satisfies the pre-condition ®,
the program s, if it terminates, produces some environment E’ that satisfies the post-
condition ¥, while modifying at most the variables in the set A. The context I" contains
a mapping of type names X to their map types 7 and the set of local variables x that
are in scope. Well-formedness conditions on I' ensure that (like runtime environments
F) it always contains bindings for two distinguished map variables: H, a total map from
integer locations to integer values, which represents the conventional heap; and Un, a
partial map whose domain is the set of unprotected locations.

Figures 12 and 14 present the main semantic rules for YCORE. The following para-
graphs explain the key rules.
The frame rule. The key feature of our logic is that it admits the frame rule, (T-Frame),
which states that a formula ®’, whose free variables do not overlap with the set of free
variables modified by a statement s, is preserved across execution of s. Crucially, because
the state of critical data with type X is represented with a variable X that is distinct from
variable H, the frame rule can soundly be used to preserve invariants of that critical data,
when X is unmodified, despite arbitrary modifications to H in s.

Checking attacker code. (T-Hole) shows the rule for checking holes in statements. These
holes are to be filled by attacker code that can have arbitrary effects on the heap. (T-
Hole) states that any property ® that does not involve the heap is preserved across calls to
the attacker code. As such, (T-Hole) is an instance of (T-Frame), which we prove sound
under certain syntactic restrictions on the attacker code that fills a hole—roughly, that it
be a closed term without any instructions that involve critical types.

Declaring new types. (T-NewX) shows how new types are introduced. The premises of
the rule check that the type 7 is well-formed (e.g., does not mention names that are not in
scope) and that X is a fresh name. The body s is checked in a context where X is bound
to the type of a map, and X is recorded as one of the variables that may be modified by
s. Since all heaplets are initially empty, the pre-condition of s may be proven under the
assumption that X = \¢. L.

DA\FV(®) - {0} s{¥} HgFV(®) HeA
DAF{O AD)s{D AT} 7 T AR {D) & (B}

I'Frok XgdomDT #=int—>r T,X:7AXEF{®}s{U}

- T-NewX
DA F{VX:7.X =XM.1L = &} newtype X = 7ins {¥}

I'kFerez,yok L =Uyco. {e2+[X|r*i} ranger X =7
y, X, Un,7 € A B o1 = copyp L from H to X
®, 090 = chkAndRemr T L o3 =updUnp L7 L

AR {‘1) A(o10020030 [ez/y])(\ll)} y := blessx [61} e {\II} T-Bless

I'kerea,yok L=Uyeo. {e2+[X[rxi} rangep (X) =7
y, X, Un, 7 €A o1 = copyr. L from H to T
., 09 = chkAndRemr X L 03 =updUn. L 71

T-UnBl1
T:AF{®A (010020030 [e2/y])(U)} y := unblessx [e1] e2 {U)

'Feok v, =readFromr H (e:X) v, = Xr(e)
F;A = {(131} S1 {\IJ} F,A [{(I)Q} S2 {\I/}

TIsX
;AR {((e € domrX AN(X =UnV o, =v3)) = ®1) A (e € domr X = $2)}
if e is in X then s; else so
{w}
'k e, yok y €A X #Un
vy, = readFromr H (e:X) vy = Xr(e) o = [(Hi(e+ offsetp X p))/y] TR
AR {e € domr X A (v = v, = o(¥))}y := X(e).p{T})
'+ €1, €2 ok
leH[el(*eg} U:[Hl/H}
! TLWr T-Ab
IHE {o(P)}liber := e {U} s A+ {True} abort { ¥}
I'kej,eook X, HeA X #Un vy =readFromr H (e1:X)
vy = Xr(e1) H, = H(e1 + offset X p) < e3]
o1 = copyr e1 from Hy to X o =010 [Hi/H| W
-Wr

;AR {er € domrX A (vp = v, = 0(¥))} X(er).p:=ez {U}

Tkeyok o=[(He)/y

Diyb{o(V)}liby :=e {¥} TLRd

Figure 12. T; A - {®} s {¥}: A Floyd-Hoare logic for YCORE (Selected rules)

Blessing and unblessing. The rules (T-Bless) and (T-UnBless) are closely related—in
fact, they are symmetric. The command y := blessx[e1] e blesses a sequence of ey
objects beginning at es to the type X, i.e., it casts ey to the base of an e;-numbered
array of X objects and stores a reference to the base location in the local variable y. The
unbless command does the opposite, removing the protection on an array of objects. We
illustrate the behavior of these operations using the YCORE program in Figure 3.

This program declares two object types X and Y, where the type Y has the type
X nested within its first component. When blessing an object Y, YARRA requires all
sub-objects of Y to already be blessed—this is important since we want our frame rule

Xa + d'] = M.if £ € {a} then a’ else (X¥)
{a} ={z|z=a}
Uay <icapt® | @} ={z | Fi.(a1 <i < az A D)}

copy-from-to : (Env x Locs * Map * Type) — Subst

copyr L from'Y to int =-

copyr L fromY to X = let o = AM.readFromr Y (£:X) in
[(M.if £ € Lthen o Celse X £)/X]

copyp LfromY to (t1,72) =let Ly ={{+|m|r | £ € L} in
let 01 = copyp L fromY to 11 in
let 02 = copyp La fromY to T2 in
g1 002

Membership of types in the modifies set, A

mt € A = True
XeA :3A17A2.A:A17X7A2
(r1,72) € A =711 €EAANTREA

chkAndRem : (Env * Type x Locs) — (Prop * Subst)
chkAndRemr int L = (L C dom Un,-)
chkAndRemr X L =letd=Vz.x € L=z € domr(X)in
(®, [(AL.if ¢ € L then L else X £)/X])
chkAndRemr (11, 72) L =let Lo ={{+|m|r | £ € L} in
let 1,01 = chkAndRemr 11 L in
let &5, 09 = chkAndRemr 12 Lo in
(@1 A ‘I)Q, g1 O 0'2)

updUn : (Env x Locs x Type x MapBody) — Subst

updUny. L int é = [AMif £ € L then é else Un £/Un|
updUnp L X é =-
updUny. L (11,72) € =let oy = updUny. L 11 é in

let L1 = {f-‘r— ‘T1|F ‘ {e L} in
updUny Ly T2 €

Figure 13. Auxiliary functions used in static semantics only

to say that writes that modify non-Y locations have no effect on the contents of Y -typed
objects. If the contents of a Y -object are not first blessed, then a write to a sub-object
X can modify the contents of some Y -object, which is inconsistent with the frame rule.
To comply with this restriction, the program above first blesses the memory location ¢ as
containing a single X object, and then blesses the location ¢ again as a Y object.

Abstractly, we model this behavior by allocating two maps corresponding to the
types X and Y. At the first bless command, (T-Bless) computes the set L of locations
in the array to be blessed. In our example, this is just the singleton set {¢}. Using the
function copyr L from H to X, we read X-typed tuple values from the heap H at each
location in L into the heaplet for X. At the first bless command in our example, this
corresponds to reading v, = (H ¢, H (¢ + 1)) and adding it to the X map at location
£. At the second bless command, we copy the value v, = (v, H (¢ + 2)) (a Y-typed
value) into the map Y at location 4.

DA {®}s{0} TE@=%) Tk =10

T-Cons
;A {®) s {0} on

I'H®ok

T-A
T;AF (& AU} assert b {0) oo

x & domT T,z; Azt {P}s{T}

T-L:
T; A {Vz.®} local z in s { ¥} o

F"@l Ok F;Al—{qh}sl {\If} F,A"{(I)Q} S92 {‘1/}

T-If
;AR {(e1 =0= ®1) A (e1 # 0= P3)} if e; then s; else sz {T}

'keok THFY;,0k DAF{DP}s{Tin}

T-Whil
T; A {Win A (e1 £ 0=) A (1 = 0A Uy =)} while e s {T} e

DAE{®:} s {¥) AP} s {P1}
F;A = {Q)} S1; 82 {\I/}

T-Seq

T-Skip T-Abort

;AR {U} skip {V} 5 A+ {True} abort {U}

Figure 14. T'; A + {®} s {T}: A Floyd-Hoare logic for YCORE (Standard rules)

Additionally, when blessing locations we enforce two other invariants key to the
soundness of our frame rule. First, when blessing a location ¢ to be a type 7, we must
check that the fields of the type 7 are appropriately blessed or unblessed—we call this
the field consistency condition. For this purpose, in addition to the maps for each type,
our semantics also keeps track of amap Un : int — int for locations that are not blessed
at any protected type. Second, we ensure that in addition to the heap H, every memory
location is in at most one map—we call this the disjoint domains condition.

We use two auxiliary functions to enforce these invariants. At the first bless com-
mand of our example, chkAndRemr (int, int) {¢} checks that the locations {¢, (¢ + 1)}
are currently unblessed, i.e., they are in the Un map. At the second bless command, we
use chkAndRemr (X, int) {{} to check that location ¢ is in the domain of X and loca-
tion (¢ 4 2) is unblessed. In both cases, the check manifests itself as a pre-condition ®
for verifying the bless command. For the second bless, to ensure the maps for X and
Y do not overlap, we additionally compute a substitution oo which updates the map X
by removing the location ¢ from its domain. The function updUnp L 7 L computes a
substitutions that removes locations that are newly blessed from the Un map—at the first
bless these locations are {¢, ¢ + 1} and, at the second, {¢ + 2}.

Finally, we require Y, X, and Un to be in the set of modified locations A. Addition-
ally, since the maps of nested types are also modified (e.g., the map X when blessing a
location as Y'), we overload notation and require 7 to also be in A. The pre-condition
in the conclusion is a propagation of the post-condition under the composition of all the
computed substitutions. We also include the formula & in the pre-condition to enforce
field consistency.

The rules for unbless are entirely symmetric to those for bless, swapping the role of
a type name X for its representation 7, and adding elements to the Un map instead of
removing them. In our example, the first unbless removes a value v, = (v, %) from the

Y -map at location ¢; adds v, to X at location ¢, and adds the location ¢ + 2 back to the
Un map. The second unbless removes v/, from X at location ¢ and adds {¢, ¢ + 1} back
to the Un map.

Typecase. The typecase construct allows a programmer to test whether a location is ei-
ther the head of an X -typed object, or not blessed at all. To test the latter condition, a
programmer can write (if e is in Un then s; else s3), which causes s; to be executed
only if e is an unblessed location—this is a primitive form of the vacant function used
in the memory manager of Section 2.2, which can be expanded to a sequence of type-
case commands. (T-IsX) formalizes the semantics of typecase. The then-branch s; can
assume that the scrutinee e is in the backing store of X and, when X is not Un, can
additionally assume that the value of X in the backing store matches the contents of the
heap H. A mismatch between the backing store and heap signals a potential corruption
of memory by library code—this situation is detected dynamically by the YARRA run-
time and causes the program to abort. The else-branch, in contrast, can assume that e is
notin X.

Reads and writes. The static semantics of checked reads (T-Rd) and writes (T-Wr)
closely mirrors the reduction rules for these constructs in the dynamic semantics. Dy-
namically, both instructions require the reference being used to be blessed—this mani-
fests itself as a pre-condition in the static semantics that e € domprX. Since the dynamic
semantics includes a check to make sure that the value being read or written to is uncor-
rupted (aborting otherwise), (T-Rd) and (T-Wr) allows us to assume that vy, = v,, i.e.,
protections in YARRA operate at a level of granularity corresponding to the object, al-
lowing programmers to reason about and preserve internal invariants among the fields of
an object, rather than each field in isolation. The rules (T-LRd) and (T-LWr) provide no
special semantics for un-checked reads and writes in the static semantics—Ilibraries are
free to read from or write to arbitrary portions of the heap, but leave all critical heaplets
unchanged.

3.5. Robustness with respect to Non-control Data Attacks

Our first metatheoretic result makes precise our definition of an attacker that can mount
only non-control data attacks. We show that verification of a YCORE program is inde-
pendent of the code of a non-control data attacker.

Definition 1 (Valid attacker program). A hole-free statement s is a valid attacker pro-
gram if both of the following conditions are true:

1. FV(s) = (), where FV(s) are the free local variables and critical type names in
s.
2. s does not contain statements of the form (newtype X = 7 in s) or (assert D).

The next lemma establishes that valid attackers are always verifiable in our logic. A
corollary of this property is that programs that are verified in our logic remain verifiable
even when composed with valid attackers.

Lemma 1 (Valid attackers are trivially verifiable). For any valid attacker program s, the
triple T'; H & {True} s {True} is derivable, where T' = H:int — int, Un:int — int.

Proof: (Sketch) Since s has no free type names and creates no new types, s is free of in-
structions like X (e1).p := eg that involve manipulation of critical data types. So, for any

X # H, X is not in the modifies set. Likewise, s has no free local variables, and hence
modifies no local variables. Finally, s is also free of assertions. The remaining state-
ments involve arbitrary reads and write to the heap H, the usual control constructs, and
operations on new local variables. Arbitrary combinations of these remaining constructs
satisfy the trivial Hoare triple {True} s {True}. O

Corollary 2 (Robustness under composition with valid attackers). For any I', A, @,
U, program s with hole e; and valid attacker program s;; If T; A = {U} s {®} then
LA {W} ssi]i {9}

Note that YCORE provides no first-class control constructs (e.g., computed jumps)
thereby preventing attackers from subverting the control flow of the program. Further-
more, although technically feasible in YCORE, we also forbid valid attackers from mod-
ifying local variables used by the program since this corresponds conceptually to allow-
ing attackers to modify locations on the stack. As such, valid attackers in YCORE are
capable of mounting only non-control data attacks.

3.6. Soundness of the Logic

The main formal result of our work is a soundness result, namely Theorem 3, which
guarantees that verified YCORE programs never get stuck (although they may abort).
Intuitively, the theorem states that the reduction of verified YCORE statement s does
not get stuck and that if the reduction terminates, it ends in a state satisfying the post-
condition. Clause (1) of part (A) in the statement below states that the configuration
(E; s) is not stuck. Clause (2) states that the new state E’ is well-typed in an extension of
the environment I'. Clauses (3) and (4) state that the program s’ is verifiable but with the
same post-condition, ¥ and a new pre-condition ®’, and with a modifies set that includes
at most the variables modifiable by s and possibly any new locals or heaplets allocated
in the single step of reduction. Clause (5) ensures that the new pre-conditions @’ is valid
in the new state E’. Finally, part (B) states that when the computation has terminated,
the post-condition is valid.

Theorem 3 (Soundness). For all environments T, A (such that & T'; A ok); formulas
D U (such that ' & W ok); well-formed stores E (such that = E : T') that satisfy the
pre-condition (E |= ®); and hole-free programs s such that T; A+ {®} s {T}:

(A) If s # skip, then there exists E',s' T, ® | A’ such that all of the following are
true:
(1) (E;s) ~ (E';8);
2)F E':T,T;
(3) A C AUdom T';
(4)T, I, A" {@'} s’ {¥}; and
(5) E' = &,
(B) If s = skip, then E = 0.

Proof. (Sketch) By an induction over the structure of the verification judgment, I"; A
{®} s {U}. The key technical lemma that we rely on is a framing property, which
establishes that for all stores F; and Es and typing context I'; and I's, such that
F Fy : T'yand - Ey : I'1,I'y (ie., Ey is an extension of FE7); and for all for-

1. s flag, H F {[cgiCmd, cgiCmd + |cchar|r % 1024) € cchar}
flag = CheckRequest (cgiCmd)
{flag # 0 = validCmd(cchar,cgiCmd)}

2. T';H & {True} Log("...") {True}
3.T; H + {validCmd(cchar, cgiCmd) A validDir(dchar, cgiDir)}

ExecuteRequest(cgiDir, cgiCmd)
{True}

Figure 15. Three triples to illustrate the power of the frame rule

mulas @, such that I'; = & ok (i.e., the free variables of ®; only involves F;) and
Ve, X € FV(®).E1(z) = Ez(z) AN E1(X) = E3(X) (and that E; and Es agree on the
free variables of ®); then, By = ® < FE; = O. O

3.7. The Power of the Frame Rule

This section revisits the nullhttpd example of Section 2.1 and shows how, us-
ing our logic, we can reason about the safety of the program. Recall that the ex-
ample defines two types cchar and dchar, where the static variables cgiCmd and cgiDir
hold arrays of these types respectively. The program contains a call to the function
ExecuteRequest(cgiDir, cgiCmd), and our goal is to ensure that both arguments to this func-
tion are not corrupted, either by buffer overruns within nullhttpd, or by the effects
of libraries it uses. We can capture this specification by assuming that the three triples in
Figure 15 hold for some binary predicates validCmd and validDir.

These triples are given in a context I' that includes bindings for the local variable flag
and the type names cchar and dchar. The static variables cgiCmd and cgiDir are arbitrary
address constants. Additionally, in order to fit in YCORE, we model CheckRequest and
ExecuteRequest as inlined sequences of instructions that are free to use arbitrary YCORE
instructions. In contrast, Log(". . .") represents a sequence of instructions from a library
function, whose only effects are via un-checked reads and writes.

The first triple states that the call to CheckRequest modifies the heap and flag, and
decides if cgiCmd is a validCmd when it can be shown to be an array of protected cchars.
The second triple states that Log can have arbitrary effects on the heap H, since it contains
library calls. However, it has no effects on the heaplets corresponding to cchar and dchar.
The third triple says that ExecuteRequest demands a pre-condition to ensure that both its
arguments are valid.

Our semantics (via Lemma 1) ensures that any sequence s of well-scoped library
commands (e.g., the call to Log) satisfies the trivial Hoare triple {True}s{True} and mod-
ifies no type maps X aside from . In such a case, according to the frame rule, a for-
mula ¢ that only references types X and local variables x inaccessible to the library s
is preserved across calls to s. Most importantly, we can come to the conclusion that ® is
preserved without having to analyze or modify the memory access patterns of s. Therein
lies the power of YARRA.

To illustrate this power, consider our example in a context where validDir(dchar, cgiDir)
initially holds true. We can guard the call to ExecuteRequest with a test to make sure
that flag is non-zero, and verify that the sequence of commands are valid. In particular,
using the frame rule, we preserve the predicate validDir(dchar, cgiDir) across the first
triple, since it only modifies flag and the heap, whereas the free variables of the pred-

icate include only the map for dchar (cgiDir is a constant). Likewise, we preserve both
validDir(dchar, cgiDir) and the post-condition of the first triple above across the call to
Log, without examining the code of Log, even though it has arbitrary effects on the heap.

4. Implementation

The YARRA compiler is implemented as a plug-in to the CIL compiler infrastructure [25].
It implements YARRA’s protection mechanisms using two sets of techniques. YARRA
source protections are applied to code compiled with the YARRA compiler to ensure that
the program neither misuses critical data nor modifies the YARRA runtime’s internal data
structures. YARRA fargeted protections instrument points where control flow enters or
leaves YARRA-compiled code. On exit, critical data (and runtime data structures) are
locked using hardware page protections, which are unlocked on entry. As we will see in
the evaluation section, these two techniques have different performance characteristics:
source protections incur an additional cost on each modification to the heap, whereas
targeted protections incur a cost when control transfers between instrumented and unin-
strumented code. Hence, the programmer can choose which files are compiled under
YARRA, incurring the cost of source protections, or compiled normally, incurring a cost
as control transfers between protected and unprotected functions.

Source and targeted protections are both implemented via a source-to-source trans-
lation that inserts calls to a runtime system. Section 4.1 introduces the YARRA runtime
system and describes how the YARRA language extensions are implemented. Section 4.2
describes how critical data and YARRA internal data structures are protected as control
transfers to uninstrumented code, and Section 4.3 discusses trade-offs in designing the
runtime data structures. We conclude this section by revisiting the performance trade-
offs between protection mechanisms. First, however, we clarify the relationship between
the formal development of the previous section and our implementation.

Relating YCORE fo YARRA. YCORE is clearly a much smaller language than C, the
language addressed by the YARRA implementation. Nevertheless, YCORE provides the
guiding principles behind the design of YARRA. The gap between the formal model and
the implementation is, however, important to consider—we list the main distinctions.

e We restrict our attention to single-threaded C programs.

e Whereas the attacker in YCORE is restricted, by construction, to mounting only
non-control data attacks, the C-attacker is not limited in this way. As such, the
guarantees provided by YARRA are formally justified only by combining its pro-
tections with control-flow integrity (CFI) checking. YCORE does not model the
C stack, either. However, typical CFI implementations also protect the stack,
since its contents determine control. We have yet to integrate YARRA with CFI,
although the protections provided by YARRA and CFI are complementary and
should, in principle, compose naturally.

e In YCORE, we model interactions between trusted and untrusted code by a pro-
gram with multiple holes (which can be filled with untrusted code). In our im-
plementation, we work at the granularity of object files composed by the linker.
An object file compiled using YARRA is considered trusted (since it is instru-
mented to respect YARRA’s invariants); all other object files are untrusted. As in

Y CORE, the flow of information between trusted and untrusted code is bidirec-
tional. Unlike in YCORE (which lacks procedural abstraction), control transfer
between trusted and untrusted code in YARRA is primarily via procedure calls
and returns—semantically, this is superficial.

® YCORE ensures the integrity of the shadow heaplets by construction—untrusted
code simply does not have access to these maps. As mentioned previously,
YARRA enforces the integrity of its internal data structures through a combina-
tion of source-code instrumentation and hardware page protections. In all cases,
we assume that the YARRA runtime “starts first”, i.e., the application begins with
control in the YARRA runtime so that all internal data structures are suitably pro-
tected before untrusted code executes.

4.1. YARRA Source Protections

YARRA source protections are applied to modules compiled with the YARRA compiler.
In order to avoid syntax extensions to C (and thus requiring extensions to the front end),
our compiler accepts as input C source files and additional configuration files that mark
certain types in the program as being critical. These extra files can be generated by ex-
tracting type definitions containing the yarra keyword and using a macro to replace yarra
with typedef during the preprocessing phase. Calls to the YARRA functions bless, unbless,
isin, and vacant are inserted into the C source files as standard function calls, which are
implemented by the runtime system. Our intention is for (assertion-free) instrumented
programs to be verifiable according to the rules of our logic®. The resulting program is
compiled with gcc, and, when used in conjunction with defences against control-flow
attacks, may be safely linked against unmodified components.

On execution, the YARRA runtime assigns each memory location a YARRA type
identifier (a ytype) corresponding to the type of data it holds. The bless and unbless instruc-
tions change the ytype associated with a set of locations, and the compiler instruments
read and write instructions with checks to ensure that the static types of pointers match
the ytype of memory accessed at runtime. Because the YARRA compiler sees every read
and write, the runtime system is able to abort the program if blessed memory is written
to through an untyped pointer.

The runtime system maintains type information and implements the checks. The key
data structure is a map that associates each memory address with the critical object to
which it belongs (if it does belong to one).

map : address — {head:bit; tid:ytype}

The map implements a function from addresses a to pairs consisting of a bit and a
ytype. The bit marks whether a is the head (first byte) of a critical object, and the ytype
identifies the type of the enclosing critical object. If the location is not part of an object,
its ytype is Un. The runtime system exposes the following functions that manipulate the
map.

3We do not attempt to prove any assertions statically.

® Bless: void bless<ytype t>(void *p). The bless function updates the map to reflect
that addresses [p, p + sizeof(1)) are part of a critical object of type t. It sets the head
bit at location p, assigns t to each location in [p, p + sizeof(t)), and requires fields
of p with critical types to be blessed in advance; the type identifiers of the nested
objects are replaced by t and their head bits are reset.

e Typecase: intisin<ytype t>(void *p). Typecase is implemented as a boolean func-
tion, which returns a non-zero integer if p has been blessed with type t—i.e., the
head bit is set and locations [p, p + sizeof(t)) have ytype t.

e Unbless: void unbless<ytype t>(void xp). The unbless function undoes the effects of
bless. First, it calls isIn(, p) to ensure that p has been previously blessed. Second,
it clears the addresses [p, p + sizeof(t)) in the map of association with t.

e Vacant: int vacant<ytype t>(void *p). The vacant function returns a non-zero integer
if [p, p + sizeof(t)) has ytype Un.

Types in C are strictly static, but YARRA functions take critical types as arguments.
The YARRA compiler resolves this conflict by mapping each critical type to a unique
integer (the ytype) and replacing each ytype argument with the appropriate integer.

The YARRA compiler does the following:

e Builds run-time type representations for each critical type. Each representation
includes the ytype, its size, and offsets of fields.

e Prefaces each critical read and write of pointer p with a call to isIn(typeOf(p), p).
Execution aborts if the call fails.

e Prefaces each untyped write with a call to vacant and aborts if it returns 0.

The compiler must instrument critically-typed reads as well as writes, because dy-
namic unblessing can change the protection on the underlying memory. Consider two
critically-typed pointers that alias a blessed memory location. Unblessing one pointer
invalidates future reads through the other; reading from unblessed memory through a
critically-typed pointer is illegal. YARRA offers no guarantees about untyped reads, and
hence they are not instrumented.

Protecting the map. To protect the map data structure from heap modifications in com-
piled code, the runtime system assigns a unique YARRA type to the heap locations con-
taining the map. Hence, the same checks that guarantee the integrity of critical data also
guarantee the integrity of the backing store.

4.2. YARRA Targeted Protections

YARRA targeted protections rely on (1) maintaining a backing store that stores copies of
critical data, and (2) protecting that backing store from library access.
Maintaining the Backing Store.

The backing store is realized by adding a field to the map described in Section 4.1;
that is, when targeted protections are enabled, the range of the map is a triple of a bit, a
ytype, and a shadow byte. The shadow byte stores a copy of the value at the address in
question.

map : address — {head:bit; color:ytype; shadow:byte}

Critical writes update this field as well as the value at their target address. The run-
time functions are similar to those in Section 4.1, with the following changes.

e Typecase. The implementation of isin is augmented to compare the value of
shadow with the value at address in the heap. If the address has been blessed and
the comparison detects a difference, indicating a potential corruption, isin aborts
the program. Notice that since the implementation of critical reads and writes use
isln, they only succeed when the shadow copy is in synch with the ordinary copy.

o Bless. bless is augmented to copy values of newly blessed addresses to the backing
store.

As mentioned earlier, critically-typed writes are also instrumented at runtime with a call
to a new runtime function, yShadowWrite(void xp, size_t size), which copies the values in the
heap starting at p into the backing store.

Protecting the Backing Store. We use hardware page protections to protect the in-
tegrity of the backing store. The backing store uses a special critical memory manager
(CMM), implemented using the BGET memory manager [37], for memory allocations.
The memory pool given to the CMM is tracked, and the YARRA runtime system ex-
poses yUnlock(void) and yLock(veid) functions for setting and unsetting write permissions
on those pages respectively. Boundary crossings from protected to unprotected functions
are instrumented with calls to yLock(), and each function in the runtime API calls yUnlock
if the backing store has been locked, effectively unlocking on demand.

4.3. Implementing the Address Map

We implement two versions of the address map: a standard hash table and a two-level
lookup table—the latter is similar to that used by Valgrind [27]. Although the space
overhead of both implementations grows linearly with the number of blessed locations,
the space overhead of the hash table is much smaller. However, the number of reads
required by each hash table lookup is proportional to the number of hash collisions,
and hence its efficiency degrades as the number of blessed locations increase. The hash
table implementation is thus well suited for YARRA-protected programs with few blessed
locations and many boundary crossings (this was the case in our experiments).

The lookup table uses a primary table with 64K entries, each of which points to a
secondary table with 64K tuples. This associates a tuple with each byte in memory; the
higher order 16 bits determine the offset in the primary table, and the lower order bits
identify a tuple in the secondary table. Secondary tables are only allocated when a byte
within their range is blessed, making unblessed lookups very fast and blessed lookups
slightly slower. However, the primary and all secondary tables must be protected on every
boundary crossing, which can be expensive, given that the primary table alone requires
218 bytes. Thus, the two-level page table implementation is better suited to programs
with many blessed locations and fewer boundary crossings.

4.4. Performance Trade-offs
Targeted protection eliminates the cost of instrumenting every read and write through-

out the program in exchange for maintaining copies of critical data and protecting the
store at boundary crossings. However, in cases where the number of blessed locations

Program | YARRA Protections Orig. LOC/ | Bless/
Mod. LOC Unbless

sshd Password structure and

validation bit. 60148 /497 | 23
ftpd Path/command buffers. | 17993/262 | 3
ghttpd Pointer to command

buffer. 514 /69 3

telnetd Login command string. | 3962 /63 3

Figure 16. YARRA-protected Applications

in the address map is large, it may be more efficient to protect the program by instru-
menting more of its modules. This adds more read/write instrumentation but reduces the
number of boundary crossings. Section 5.3 presents measurements comparing protection
mechanisms and address map implementations.

5. Evaluation

In this section, we evaluate our prototype implementation of YARRA. The important
take-away is that despite the lack of optimizations, YARRA’s performance is adequate to
protect small sets of high-value data structures in server applications, and that YARRA
can defend against important vulnerabilities with low impact on end-to-end application
performance. Alternative approaches based on array-bounds checking cannot (soundly)
implement such targeted, negligible-overhead performance protections.

We begin by using YARRA to harden four open source programs with known vulner-
abilities to non-control data attacks (Section 5.1) and explore the cost of adding targeted
protections to IO-bound applications. Next, we evaluate performance of the YARRA
runtime in CPU-bound applications that make heavy use of protected functions (Sec-
tion 5.2), including a comparison between the two protection mechanisms. Finally, we
compare two implementations of the internal runtime data structures (Section 5.3).

5.1. Hardening Server Applications with YARRA

Chen et. al identify non-control data attacks on real-world applications, including FTP,
SSH, Telnet and HTTP servers. These applications share a common characteristic: they
each have a well-defined module that handles a small amount of security-sensitive data
i.e., critical data structures. The applications are well-suited to YARRA protections pre-
cisely because they share this characteristic.

We show how these applications can be hardened with minimal effort, often with
only a new critical type, a few calls to bless and unbless, and minor changes to statements
using critical variables. We chose the data-structures to protect in each application based
on the attacks described in Chen et. al.’s paper. Figure 16 shows the server applications
we harden, the nature of critical data protected, and the amount of code changed. As the
table indicates, YARRA protections require very few modifications to these applications.
Few locations required blessing and unblessing, and the vast majority of modified lines
were changed by automated search and replace of variable names. Further, each applica-
tion required less than a day’s effort, showing the ease of applying YARRA protections.

Unprotected End to End Server

2.00x
1.50x
1.00x
.50x
.00x

Overhead Relative to
Unprotected Execution

openssh ftpd ghttpd telnetd

Figure 17. Runtime overhead for hardening data vulnerabilities using YARRA’s targeted protection mode,
measured from the client (“End to End”) and server perspectives. There was no measurable overhead from the
client’s perspective. A value of /x indicates no measurable overhead.

We measure end-to-end performance to gauge the impact of applying YARRA pro-
tections. For each server, we define a client/server interaction wherein the client connects,
performs a small task, and disconnects. By design, each interaction exercises vulnerable
code in the server. We compare the run times of a client connecting to vulnerable (un-
modified) and hardened servers, normalizing the results against the run time connecting
to the vulnerable server. Figure 17 shows our results (“End to End”).*

We found no measurable overhead between connecting to hardened and vulnera-
ble servers, irrespective of the total lines of code in the program or number of memory
accesses throughout the code. YARRA was effective in protecting the security-critical
modules identified by Chen ef al. as vulnerable to non-control data attacks.

In order to investigate further, we instrumented each server to isolate and collect run-
time data from within the protected module, allowing us to measure function slowdown
for hardened server functions. Our findings are shown in Figure 17 (“Server”), reflecting
a modest performance impact (at most 1.6x) on the hardened module.

5.2. Stress-testing the Performance of YARRA

We employ a second, atypical use case to evaluate the performance of the YARRA run
time under heavy load, wherein we use YARRA to protect module data structures so that
clients may not corrupt it. For this study, we experiment with the BGET memory alloca-
tor [37], using YARRA to protect BGET’s metadata from clients that use the allocator in a
way reminiscent of the idealized allocator example presented in Section 2.2. The BGET
clients we measure are three SPECINT2000 programs also used in the WIT paper [2].
Unlike the server applications of the previous case study, these clients frequently call

4 Average of five timed executions on a virtual machine running Ubuntu 9.10 on a 2.13Ghz Intel Core 2 Duo;
722Mb RAM.

B Unprotected Targeted ™ Whole

6x

4x

2X

S BN =

Overhead Relative to
Unprotected Execution

gzip mcf parser

Figure 18. CPU overhead for securing allocator metadata using YARRA’s targeted protections (‘“Targeted”)
compared to instrumenting the whole source program with source protections (“Whole”). A value of /x indi-
cates no measurable overhead.

routines (allocation and deallocation) which contain bless and unbless operations, thus
exercising our implementation vigorously.

Figure 18 illustrates our results,’ comparing both protection mechanisms discussed
in Section 4. To evaluate targeted protections (“Targeted”), we compile BGET using
source protections, leaving the client application untouched—hence, the critical data is
locked and unlocked each time a BGET function is invoked. Next, we compile both the
client and BGET using source protections (“Whole”), leaving only calls to the standard
library protected with targeted protections.

We found that targeted protection is much more efficient with these applications,
indicating that the cost of boundary crossings from protected to unprotected code is less
than the cost of instrumenting every read and write in the application. Even with tar-
geted protection, however, we incur a 2x overhead these benchmarks (the corresponding
overhead for whole program protection is 4 to 6x).

There are two bottlenecks in our current implementation, namely read/write instru-
mentations and boundary crossings. Because our implementation is not as highly opti-
mized as other, similar bounds-checking implementations (e.g. [24,32]), we believe that
this overhead can be lowered significantly. Further, we can use cheaper alternatives to
page protection for protecting the address map data-structure. For example, heap ran-
domization techniques can be used to hide data structure copies as opposed to paying the
cost of turning on hard protections at boundary crossings [6]. Alternatively, the address
map structure may be hidden in a separate process, using a technique similar to the one
proposed by Berger et al. [5]. These techniques would make boundary crossings take
constant time (instead of being linear with the size of the map), albeit at the cost of a
small increase in look-up speed.

5 Average of five timed executions on a machine running CentOS 5.4 on four dual-core 2.8 GHz AMD
Opteron 8220s; 8Gb RAM.

B Endto End ™ Server Server (LT)

6X
5x
4x
3x
2X

g1 s lm s °'H

Ox

Overhead Relative to
Unprotected Execution

openssh ftpd ghttpd telnetd

Figure 19. Runtime overhead for hardening data vulnerabilities using YARRA’s targeted protection mode,
measured from the client (“End to End”) and server perspectives. There was no measurable overhead from the
client’s perspective with either the hash table or look-up table (LT) address maps. A value of /x indicates no
measurable overhead.

M Targeted M Targeted (LT) ™ Whole Whole (LT)

6x

4x

2X

Ox -
gzip mcf parser

Overhead Relative to
Unprotected Execution

Figure 20. CPU overhead for securing allocator metadata using YARRA’s targeted protections (‘“Targeted”)
compared to instrumenting the whole source program with source protections (“Whole”), with both hash table
and look-up table (“LT”) implementations of the address map. A value of /x indicates no measurable overhead.

The changes to BGET were minimal, requiring only 16 calls to bless/unbless and
modifying 43 out of 241 lines in total. The SPEC applications did not need to be changed
at all.

5.3. Comparing Address Map Implementations

Figure 19 and Figure 20 compare the performance impact of using the hash table and
lookup table implementations of the address map (Figures 17 and 18 both report over-

head measured using the hash table implementation). The hash table implementation
proved to be much more efficient on the security-related benchmarks, bearing out our
earlier obsevation that the high space overhead of the lookup table is costly to protect
across boundary crossings, compared to the smaller hash table. The ght t pd benchmark
especially highlights this behavior, because there are frequent boundary crossings and
very few critical objects.

The distinction is less clear for the SPEC benchmarks using the instrumented BGET
allocator. The lookup table implemention clearly wins out when the whole program—
both SPEC benchmark and BGET library—is instrumented with YARRA; there are no
boundary transitions, and thus the space overhead of the lookup table does not have a sig-
nificant impact on performance. With targeted protection, however, there is no clear win-
ner. These programs allocate many more critical objects than the security benchmarks,
and more efficient manipulation of the shadow map via the lookup table balances the cost
of protecting more data at boundary crossings. Also, as the number of protected objects
grows, the relative size of the space overhead incurred by the lookup table decreases.

Of course, these distinctions largely hinge on our decision to protect the shadow map
using hardware page protections; the trade-offs may shift, were we to develop an alterna-
tive protection mechanism—perhaps based on heap randomization techniques or process
isolation, as we speculated in the previous section. For example, hiding critical data in a
separate process may well obviate the size of the shadow map data structure as an im-
pact on performance, and instead incur a larger cost for each invocation of interprocess
communication. We hope to explore these trade-offs in future work.

6. Related work

There is a large body of related work focused on protecting the integrity of data in a
program, often by providing increased memory safety in unsafe languages such as C
through various mechanisms, including array bounds checking, software fault isolation,
etc. Here we survey this work on indicate how it differs from YARRA.

Preventing non-control data attacks. As non-control data attacks have become more
prominent, mitigations targeted specifically to avoid them have been proposed in re-
cent years. Kong et al. [17] propose ensuring data integrity as a special case of taint
checking. They separate data and instructions into tainted and taintless, and ensure that
each instruction operates on the appropriately type of data. Mondrian Memory Protec-
tion (MMP) [38] is a technique to separate memory into fine-grained regions, and allow
arbitrary access control for individual regions. MMP allows each data type to be in its
own region and to be accessed only by selected instructions. Both these techniques can
protect data from attacks; however they require hardware support, and are not feasible
on commodity processors.

Data-flow integrity (DFI) [9] computes data dependencies between instructions us-
ing static analysis and ensures that the flow of data at runtime obeys these dependencies.
Data Space Randomization (DSR) [7] XORs the contents of memory with a random key,
making it difficult for an attacker to correctly subvert the contents. Both DFI and DSR
differ from Yarra in that they (1) apply protections to all data (and not just critical data),
(2) do not provide language support for partial protection, and (3) do not formalize the
semantics of their solutions. SIDAN [12] detects non-control data attacks using tech-

niques from the intrusion detection literature. However, it does not provide any formal
guarantees about the protection.

Array bounds checking. Mechanisms for array bounds checking seek to eliminate buffer
overflows, a major source of memory corruption in real programs. Conceptually, this ap-
proach is very simple—instrument every read and write to guarantee that references do
not fall outside the bounds of the object being referenced. Early array bounds-checking
techniques (e.g., Jones and Lin [16]) had substantial performance overheads, and more
recent work [3,4,13,24,32] attempts to reduce that overhead. Methods of reducing over-
head include eliminating the check when it can be determined statically that the check
is unnecessary, reducing the overhead of storing and retrieving the bounds, only check-
ing the integrity of writes, and allocating objects in pools of fixed size. Approaches to
memory safety through array bounds checking fail to provide complete safety unless ev-
ery memory reference is checked, including references from modules that have not been
compiled with checking enabled. YARRA differs from this prior work in its emphasis
on protecting the contents of arrays from all references made to other objects, including
references made in arbitrary external libraries.

As mentioned, YARRA’s explicit declaration of types has similarities to ideas in WIT
[2]. To reduce checking overhead, WIT maps all objects that are reachable from a store in
the program to an equivalence class and gives all the objects in that class the same color.
Mapping objects to a small number of distinct colors allows WIT to implement bounds
checks efficiently. Unlike WIT, YARRA allows the user to specify object equivalence
classes explicitly and precisely, and guarantees that all program references, including
those performed in external components, do not violate the integrity of such objects.
Further, WIT requires that the entire application be analyzed by it, including libraries, in
order to provide protection.

None of the prior work on array bounds checking attempts to define the semantics of
programs in which only some array bounds are checked. Dhurjati et al. [14] show that us-
ing a pool-allocation transformation, they are able to eliminate bounds checks altogether
and ensure semantic correctness of array references even in the presence of incorrect
frees. Similar to YARRA, they transform the program to explicitly include the pool as a
parameter to functions that operate on dynamic data. However, like other array bounds
checking research, they assume that all code in an application has been transformed to
ensure safety.

Separating and isolating memory. Software fault isolation [36] attempts to isolate the
potential negative effects of external components by preventing memory operations and
other unwanted interactions, such as system calls, that might be harmful. Castro et al. de-
scribe BGI (Byte-Granularity Isolation) [10], which provides software enforced protec-
tion domains between kernel extensions. Like YARRA, they provide an API that allows
users to explicitly identify what extensions can access what memory. Unlike YARRA,
BGI assumes that all untrusted extensions are compiled with BGI and will fail in the
presence of untrusted extensions. In addition, unlike YARRA, BGI has no formal seman-
tics.

SafeDrive [39] uses type annotations and source-to-source transformations to pro-
vide fine-grained protection for extensions written in unsafe languages. Like YARRA,
SafeDrive is able to guarantee the preservation of invariants associated with the exten-
sion’s data, provided the data has been annotated by the programmer. Unlike YARRA,

SafeDrive requires that either the entire code base has been analyzed by it or that external
types have been annotated by the programmer with their allowed bounds.

Samurai [29] also takes the approach of explicitly protecting part of the entire mem-
ory state from memory errors. Like Samurai, YARRA also focuses on protecting critical
data from memory corruption errors. Unlike Samurai, YARRA provides a precise defini-
tion of what critical memory means, incorporates those semantics in language features,
and demonstrates that such features are useful to ensure correctness and security. Further,
YARRA supports a richer set of possible implementations compared to Samurai, which
is confined to replication and error correction. Finally, Samurai provides only limited
protection from security attacks, as its focus is on reliability and fault-tolerance.

Formal reasoning. The most closely related theories emanate from a line of research
started in the 1970’s with the Euclid programming language [20]. Euclid was built in
order to facilitate verification and one of the techniques for doing so involved logically,
as opposed to physically, splitting the heap into a set of different heaplets called collec-
tions. These collections resemble the typed heaplets in this paper except that there was
no means for moving an object from one heap to another as we do with bless and unb-
less operations. In the mid-nineties, Utting [35] reexamined Euclid’s model and added a
transfer coercion that, logically speaking, moved objects between heaplets, though phys-
ically, no action was taken. Recently, similar ideas have been rediscovered by Lahiri et
al. [19]. They modernized and extended Euclid’s Hoare Logic and illustrated the interac-
tion between collections, now called linear maps, and the frame rule. The key difference
between YARRA and this previous work is that YARRA’s separate heaplets are designed
to be used in the context of an unsafe language with unverified libraries. Consequently,
the bless and unbless operations (i.e., transfers) have operational significance: they put
up and tear down physical protections.

7. Conclusion

This paper presents YARRA, a lightweight extension to C that allows programmers to
protect the integrity of critical data structures in their programs, even in the presence of
untrusted third-party libraries. We formalize the key semantic properties of YARRA by
developing a sound program logic for it. The logic includes a novel type-based frame
rule that gives programmers access to powerful modular reasoning techniques. We show
YARRA is effective in practice by protecting important server applications, tens of thou-
sands of lines long, from known vulnerabilities—in each case, we modify at most a few
hundred lines of code. Moreover, the end-to-end performance overhead is negligible in
the security-centric examples we studied.

We conclude this paper by discussing how YARRA can complement existing protec-
tion mechanisms for C programs. One effective protection against control-based attacks
is to ensure control-flow integrity (CFI) [1]. Combining CFI with YARRA would give
stronger guarantees against both control-based and non-control data attacks than CFI
alone. Further, it would require less overhead than combining CFI with complete array
bounds checking. While many approaches to array bounds checking have been proposed,
none are in widespread use. We believe that this is because of the performance overheads
imposed and issues related to whole-program compilation and third-party code. YARRA
provides an alternative approach that addresses these issues.

We also consider the value of using YARRA in cases where other techniques such
as CFI and array bounds checking are impractical. Specifically, modern systems, such as
recent incarnations of Microsoft Windows, rely on a collection of techniques to defend
against attacks, implemented in the compiler [22], heap [23], and the hardware [21].
While these mechanisms prevent a number of common attack vectors, they do not prevent
arbitrary buffer overruns from corrupting either control data (such as vtable pointers) or
non-control data (such as passwords). As a result, many publicly available documents
demonstrate how to corrupt structures such as the Windows heap metadata to mount a
successful attack [30].

In this context, YARRA provides a novel and systematic way to harden applications
from attacks. Consider the following scenario: an attacker exploits a buffer overrun in
a heap object to overwrite a function pointer in another object or in the heap metadata.
Without YARRA, the standard mitigation of this exploit would be to patch the buffer
overflow. However, this leaves the program vulnerable to other attacks that overwrite
the data, through a different buffer overflow, for example. With YARRA, the mitigation
would be to make the function pointer critical, thus protecting the system not just from
the one exploit, but from every exploit that would attempt to overwrite that function
pointer. Note that one does not need to know what vulnerabilities are present or where
they are present, in order to deploy YARRA protection.

YARRA would also be effective when used in conjunction with hardware protection
such as Data Execution Prevention (DEP), which prevents attackers from injecting code
into the heap and jumping to it. Attackers can bypass DEP using return-to-libc attacks
and return-oriented programming [8]. However, to do so they still need to overwrite a
vulnerable function pointer somewhere in the heap. In such cases, YARRA can be de-
ployed to selectively protect vulnerable function pointers. This may be an interesting
avenue for future work.

Acknowledgements: We thank Emery Berger and the anonymous reviewers for useful feedback that helped
improve this work. Portions of this material are based upon work supported under NSF grant 1016937 and
an NSERC Discovery grant. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the NSF or NSERC.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity: Principles, implementations,
and applications. In CCS. ACM, 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing memory error exploits with WIT.
In S&P, 2008.

[3] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds checking: an efficient and backwards-
compatible defense against out-of-bounds errors. In SSYM’09: Proceedings of the 18th Conference on
USENIX Security Symposium, pages 51-66, Berkeley, CA, USA, 2009. USENIX Association.

[4] E. Berger. Heapshield: Library-based heap overflow protection for free. Technical Report UM-CS-
2006-028, University of Massachusetts at Amherst, Amherst, MA, 2006.

[5] E.D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multithreaded programming for C/C++. In

OOPSLA, 2009.

[6] E.D. Berger and B. G. Zorn. Diehard: Probabilistic memory safety for unsafe languages. In PLDI,
2006.

[7]1 S. Bhatkar and R. Sekar. Data space randomization. In DIMVA, volume 5137, pages 1-22. Springer,
2008.

[8] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go bad: generalizing
return-oriented programming to RISC. In CCS 2008. ACM, 2008.

(9]
[10]
(1]
[12]
[13]
[14]
[15]
[16]
[(17]
(18]

[19]
[20]

[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]

[37]
[38]

[39]

M. Castro, M. Costa, and T. L. Harris. Securing software by enforcing data-flow integrity. In OSDI.
USENIX, 2006.

M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly, P. Barham, and R. Black. Fast
byte-granularity software fault isolation. In SOSP, 2009.

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data attacks are realistic threats. In
Usenix Security, 2005.

J.-C. Demay, E. Totel, and F. Tronel. SIDAN: A tool dedicated to software instrumentation for detecting
attacks on non-control-data. In CRiSIS, pages 51-58. IEEE, 2009.

D. Dhurjati and V. S. Adve. Backwards-compatible array bounds checking for C with very low overhead.
In 28th International Conference on Software Engineering, pages 162—-171. ACM, 2006.

D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety without runtime checks or garbage
collection. SIGPLAN Not., 38(7):69-80, 2003.

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A safe dialect of C. In
USENIX, 2002.

R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds checking for arrays and pointers in C
programs. In AADEBUG, 1997.

J. Kong, C. C. Zou, and H. Zhou. Improving software security via runtime instruction-level taint check-
ing. In ASID, 2006.

S. Lahiri and S. Qadeer. Back to the future: revisiting precise program verification using SMT solvers.
In POPL, 2008.

S. Lahiri, S. Qadeer, and D. Walker. Linear maps. In PLPV, 2011.

B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and G. J. Popek. Report on the programming
language Euclid. SIGPLAN Not., 12(2), 1977.

Microsoft. DEP: Data execution prevention. http://support.microsoft.com/kb/875352.

Microsoft. Gs flag (buffer security check). http://msdn.microsoft.com/en-us/library/
8dbf701c%28VS.80%29.aspx, 2005.

Microsoft. Preventing the exploitation of user mode heap corruption vulnerabilities.
http://blogs.technet.com/b/srd/archive/2009/08/04/preventing-the-exploitation-
of-user-mode-heap-corruption vulnerabilities.aspx, 2009.

S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. SoftBound: Highly compatible and com-
plete spatial memory safety for C. In PLDI, 2009.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermediate language and tools for analysis
and transformation of ¢ programs. In CC, 2002.

G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe retrofitting of legacy code. In POPL, 2002.
N. Nethercote and J. Seward. How to shadow every byte of memory used by a program. In VEE, 2007.
P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In Proceedings of the
31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’04, pages
268-280, New York, NY, USA, 2004. ACM.

K. Pattabiraman, V. Grover, and B. G. Zorn. Samurai: protecting critical data in unsafe languages.
SIGOPS Oper. Syst. Rev., 2008.

P. Phantasmagoria. The malloc maleficarum: Glibc malloc exploitation techniques. http://
packetstormsecurity.org/files/view/40638/MallocMaleficarum.txt,2005.

J. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS. IEEE, 2002.

O. Ruwase and M. Lam. A practical dynamic buffer overflow detector. In NDSS, 2004.

C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and B. Zorn. Modular protections against non-
control data attacks. In Computer Security Foundations Symposium, 2011.

A. Sotirov. Modern exploitation and memory protection bypasses. http://www.usenix.org/
events/sec09/tech/slides/sotirov.pdf, 2009.

M. Utting. Reasoning about aliasing. In Fourth Australasian Refinement Workshop, pages 195-211,
1995.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based fault isolation. In
SOSP, 1993.

J. Walker. The BGET memory allocator. http://www.fourmilab.ch/bget/, 1996.

E. Witchel, J. Cates, and K. Asanovi¢. Mondrian memory protection. In Architectural Support for
Programming Languages and Operating Systems, Oct 2002.

F. Zhou, J. Condit, Z. Anderson, 1. Bagrak, R. Ennals, M. Harren, G. Necula, and E. Brewer. Safedrive:
safe and recoverable extensions using language-based techniques. In Proceedings of the 7th USENIX

Symposium on Operating Systems Design and Implementation - Volume 7, OSDI *06, pages 44, Berke-
ley, CA, USA, 2006. USENIX Association.

