
L AUNCH PADS: A System for Processing Ad Hoc Data

Mark Daly
Princeton University

mdaly@Princeton.EDU

Mary Ferńandez
Kathleen Fisher

AT&T Labs Research
mff,kfisher@research.att.com

Yitzhak Mandelbaum
David Walker

Princeton University
yitzhakm,dpw@CS.Princeton.EDU

An Introduction to PADS. Ideally, any data we ever encounter
will be presented to us in standardized formats, such as XML.
Why? Because for formats like XML, there are a whole host
of software libraries, query engines, visualization tools and even
programming languages specially designed to help users process
their data. However, we do not live in an ideal world, and in
reality, vast amounts of data is produced and communicated in
ad hoc formats, those formats for which no data processing tools
are readily available. Figure 1 presents a small selection of ad hoc
data sources. As one can see, ad hoc data exists in a very wide
variety of fields and the users range from network administrators to
computational biologists and genomics researchers to physicists,
financial analysts and everyday programmers.

Programmers often deal with this data by whipping up one-time
Perl scripts or C programs to parse and analyze their data. Unfor-
tunately, this strategy is slow and tedious, and often produces code
that is difficult to understand, lacks adequate error checking, and
is brittle to format change over time. To expedite and improve this
process, we developed the PADS data description language and
system [2, 3]. Using the PADS language, one may write a declar-
ative description of the structure of almost any ad hoc data source.
The descriptions take the form of types, drawn from a dependent
type theory. For instance, PADS base types describe simple objects
including strings, integers, floating-point numbers, dates, times,
and ip addresses. Records and arrays specify sequences of elements
in a data source, and unions, switched unions and enums specify al-
ternatives. Any of these structured types may be parameterized and
users may write arbitrary semantic constraints over their data as
well.

Once a programmer has written a description in the PADS lan-
guage, the PADS compiler can generate a collection of format-
specific libraries in C, including a parser, printer, and verifier. In ad-
dition, the compiler can compose these libraries with generic tem-
plates to create value-added tools such as an ad hoc-to-XML for-
mat conversion tool, a histogram generator, and a statistical analy-
sis and error summary tool. Finally, PADS has been composed with
the GALAX query engine [6, 4, 5] for XQuery to create PADX [1],
a new system that allows users to query and transform any ad hoc
data source as if it was XML, without incurring the performance
penalty that usually results when one converts ad hoc data into a
much more verbose XML representation.

While the PADS language provides an extremely versatile
means of creating tools for processing ad hoc data, it is nevertheless
anewlanguage and learning a new language is time-consuming for
anyone, especially for computational biologists or other scientists
for whom programming is not their primary area of expertise. To
ease the way for novice PADS users, we developed LAUNCH-
PADS, a new tool that provides access to the PADS system with-
out requiring foreknowledge of the PADS language itself. Hence,
LAUNCHPADS graphic interface will also help more experienced
PADS users to shorten their development cycle and provides a con-

Name: Use Representation
Web server logs (CLF): Fixed-column ASCII records
Measure web workloads
CoMon data: ASCII records
Monitor PlanetLab Machines
Call detail: Fraud detection Fixed-width binary records
AT&T billing data : Various Cobol data formats
Monitor billing process
Netflow: Data-dependent number of
Monitor network performance fixed-width binary records
Newick: Immune Fixed-width ASCII records
system response simulation in tree-shaped hierarchy
Gene Ontology: Variable-width ASCII records
Gene-gene correlations in DAG-shaped hierarchy
CPT codes: Floating point numbers
Medical diagnoses

Figure 1. Selected ad hoc data sources.

venient way for experts to quickly create any of the data processing
tools they need.

LaunchPads. LAUNCHPADS combines mechanisms for graph-
ically defining structure and semantic properties of ad hoc data,
for translation of this definition into PADS code, and for compi-
lation/execution of the generic tools that operate over ad hoc data.
More specifically, LAUNCHPADS breaks definition of an ad hoc
data format and generation of data processing tools into the follow-
ing steps. Figure 2 presents a screenshot of LAUNCHPADS being
used to construct a data description for a web-server log format.

1. Selection of sample data.Creation of a definition within
LAUNCHPADS begins when a user loads sample data into
the graphical interface. In Figure 2, web log data (beginning
with the IP address207.136.97.49 ... ) appears in the
top right hand corner of the picture. A user then selects a row
of data to work on in the LAUNCHPADSgridview.

2. Iterative refinement in the gridview. Once in the gridview,
which appears just below the data selection window in Fig-
ure 2, users may specify descriptions for regions of text using a
highlighting scheme. The color assigned to a region represents
the description class (base or composite) and region boundaries.
Structure within a definition is represented through a series of
refinement steps: composite regions are broken down level af-
ter level, thereby allowing for nested elements (Figure 2 shows
four nesting levels). The refinement process bottoms out when
one reaches an atomic description such as a character string, IP
address or date. Once all regions have been given a base type
in the gridview, LAUNCHPADS will generate atreeviewof the
definition for further processing.



Figure 2. LaunchPads Interface.

3. Customization in the treeview.The treeview, which appears
on the left-hand side of Figure 2, is a graphical representation
of the abstract syntax of a PADS description. In this view,
programmers can manipulate definitions with a high degree
of precision: definition elements may be created, destroyed,
and renamed; type associations for existing elements may be
changed (within limitations); element ordering may be altered;
user defined types may be added to the definition and applied
to elements; content-aware error constraints may be imposed.
Indeed, from within the tree view it is possible to access the
“expert” functions of PADS directly if one so chooses, or to
completely avoid them in lieu of a simpler definition and/or
faster development time.

4. PADS code generation, tool compilation and use.When the
user is satisfied with their PADS definition in the treeview,
they may generate PADS code. Any such generated code is
guaranteed to be syntactically correct so the user need not worry
about fussing with concrete PADS syntax if they do not want
to. Figure 2 shows the generated code in the window at the
bottom of the interface. By using the pulldown menus at the
top and a set of “wizards” (not shown), the user may now
issue commands to compile the generated code and create data
processing tools including the XML converter and statistical
analyzer. As development of LAUNCHPADS continues, we will
add further tools and corresponding wizards to the interface.

.

Conclusions In summary, in this demonstration, we will explain
the many challenges that ad hoc data pose and how the PADS lan-
guage is structured to meet these challenges. In addition, we will
explain how LAUNCHPADS provides further support for process-
ing ad hoc data by demonstrating both features for helping users
construct data descriptions and features for creating and invoking
tools that operate over data. We believe that both expert program-
mers and novices alike can benefit from this simple system for ma-
nipulating ad hoc data.

References
[1] M. Ferńandez, K. Fisher, and Y. Mandelbaum. PADX: Querying

large-scale ad hoc data with XQuery. Submitted to PLAN-X 2006.
[2] K. Fisher and R. Gruber. PADS: A domain-specific language for

processing ad hoc data. InProceedings of the ACM SIGPLAN 2005
conference on Programming language design and implementation,
June 2005.

[3] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. InACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Jan. 2006. To appear.

[4] Galax user manual.http://www.galaxquery.org/doc.
html#manual .

[5] C. Ré, J. Siḿeon, and M. Ferńandez. A complete and efficient algebraic
compiler for XQuery. InProceedings of IEEE International Conference
on Data Engineering (ICDE), April 2006.

[6] J. Siḿeon and M. F. Ferńandez. Build your own XQuery processor.
EDBT Summer School, Tutorial on Galax architecture, Sept 2004.


