
Foundational High-level Static Analysis

Andrew W. Appel

Princeton University

appel@princeton.edu

Abstract. A formal method (e.g., of software verification) is
foundationalif it proves program properties from the axioms
of logic and from a low-level machine specification (ISA or
transistors). The proofs should be machine-checked, because
hand-checked proofs don’t track real software systems well.
With recent advances on several fronts (in static analysis,
semantics, compiler verification) it is now feasible to put
scalable, fully automatic program analyses (such as shape
analysis of concurrent C programs) on a foundational foot-
ing.

This is an exciting time for the formal verification of soft-
ware, in part because several threads of research, in progress
for decades, have the potential to cohere. These threads in-
clude a gradual revolution in the specification methods for
operational semantics of programming languages (1994–
2008); progress in the specification of weak memory mod-
els (1992–2008); steady progress in abstract interpretation
(1978-2008); the maturation of mechanized proof assistants
(1978-2008) and dependently typed logics (1988-2008);
successes in compiler verification (1989, 2006); and finally,
enough decades of Moore’s law so that the proof assistants
and the abstract interpretations finally have usable perfor-
mance.

Now we can achieve end-to-end guarantees: based on
fully automated static analyses of source programs, we can
efficiently obtain machine-checked proofs about the behav-
ior of machine language. In this paper I will outline the ar-
chitecture of one such end-to-end system for concurrent pro-
grams. The system itself is notat presentconnected end-to-
end; here I outline the possible, not report an achieved result.
However, each of the components has been built, by differ-
ent researchers at different institutions in different countries,
and the method of connecting them has become clear.1

A top-to-bottom verified architecture. At the top we have a
C program that uses malloc/free, pointers, threads and locks,
all with some conventional discipline. At the bottom we
have the machine language of an instruction set architecture

1 This is not a survey! At each level I will cite one or two illustrative
examples, but of course there are many more that I don’t have space to
cite here.

(ISA). (In fact, we can go higher than C and lower than the
ISA, as I’ll discuss at the end.)

We apply a modern automatic static analysis algorithm to
the C program. This can guarantee important safety proper-
ties with little or moderate effort from the programmer: error
messages from static-analyzer can usually give appropriate
feedback in the programming process. For example, “lock
l is always held whenever shared variablex is accessed.”
More sophisticated analyses can track dynamic patterns of
lock-to-data correspondence, and can work even in the pres-
ence of pointers and aliasing.

As a case study, we will choose a particular static anal-
ysis. A shape analysisis an analysis of how a program
uses pointer data structures. For example one of the clas-
sic papers on this topic explains in its title, “Is it a tree,
a DAG, or a cyclic graph?” [5] More recent shape anal-
yses include those of Gotsmanet al. [7] or that of Guo
et al. [8]. Both of these algorithms appeared in PLDI’07
and represent the state of the art. Gotsman’s algorithm
proves that a concurrent program accesses data only when
it holds the relevant lock; Guo’s algorithm deduces the
backpointer/crosspointer/downpointer invariants of complex
linked data structures, for use in a parallelizing compiler.
Even more recent is Yanget al. [12] which scales up a
separation-logic-based shape analysis algorithm so that it
can verify real programs up to 10,000 lines of code.2 They
write, “It identifies memory safety errors and memory leaks
in several Windows and Linux drivers and, after these bugs
are fixed, it automatically proves integrity of pointer manip-
ulation for these drivers.”

“Proves integrity?” Many static analyzers are unsound but
useful—they catch some erroneous programs, but permit
some buggy programs to slip through—we can characterize
them as “bug-finding tools.” In contrast, we are interesed in
provably sound analyses, as are Gotsman, Guo, and Yang,
whose analyses all come with soundness proofs: if the an-
alyzer finds invariants about a program, then those invari-
ants must hold in the operational semantics of the source
language. However, these soundness proofs are problematic
for several reasons:

2 Years ago, such algorithms were impractical to imagine because they
would require hundreds of megabytes of memory. In contrast, Yang’s al-
gorithm is practical today because it runs in only a gigabyte!

1 2008/3/27

appel
Text Box
This position paper appeared in the the CAV 2008 Workshop on Exploiting Concurrency
Efficiently and Correctly, July 7, 2008.

Too hard. The proofs (typically) address many things at
once: an algorithm, an abstract interpretation lattice, an
operational semantics. It takes great effort to build such a
proof, and heroic effort to read it.

Semiformal. The static-analysis tool is a real program (not
just an algorithm), operating on a real programming lan-
guage (not just an abstraction). The proof is (typically)
about an algorithm applied to an abstraction.

Hand-checked.Real software needs machine-checked proofs.
There are too many details in the specification for any
nonmechanized proof checker to keep track of. Real soft-
ware is not frozen, it is maintained and evolved: and “by
hand” proofs don’t track changes in a reliable way.

Source v. machine.Most abstract interpretations—especially
those that give usable feedback to the programmer—are
at the source-language level, but programs execute in
machine language. Can we trust the compiler?

Separation Logic. Shape analyses have much to do with
alias analysis. Therefore it is very natural to use Separa-
tion Logic to express what the analyses do, since SL is also
about antialiasing. Indeed, many recent algorithms, includ-
ing Gotsman, Guo, and Yang, are based on principles of Sep-
aration Logic.

Separation Logic describes program state with assertions
using operators such as,

P ∗ Q AssertionP holds on one part of memory, andQ
holds on a disjoint part of memory;

x 7→ y This assertion holds on a part of memory with just
addressx holding contentsy.

emp This assertion holds only on an empty part of memory,
i.e. with no addresses at all.

True holds on any memory or portion thereof.

For example, the assertion(x 7→ 0)∗(y 7→ 0)∗True means
thatm(x) = 0, m(y) = 0, andx 6= y. A tree data structure
can be described by,

tree(x) = (x = 0) ∨
∃k, y, z. (x 7→ k)∗

(x + 1 7→ y) ∗ (x + 2 7→ z)∗
tree(y) ∗ tree(z)

The separation∗ ensures that it is not a DAG or cyclic,
because the addresses withintree(y) must be disjoint from
those withintree(z) and fromx.

Architecture of a top-to-bottom proof. What Gotsman’s,
Guo’s, and Yang’s algorithms have in common is that they
use sophisticated abstract-interpretation domains to find a
set of program invariantsI that are expressible as separation
logic formulae.3 Once these invariants are found, it is a fairly

3 For interprocedural analyses, these invariants include pre/postconditions
of functions.

simple matter to apply the axioms of Separation Logic to
verify that the program satisfies the invariants. Therefore, to
prove the soundness of one of these analysis algorithms,it
is not necessary to reason about the sophisticated abstract
interpretation algorithm that finds the invariants.Instead,
we have to verify a much simpler algorithm, the one that
checks the invariants by applying the axioms of separation
logic.

Then, when an algorithm such as Yang’s “proves in-
tegrity” of a source-language program, we can guarantee
using machine-checked proofs that the compiled (machine-
language) program will have this integrity. We address the
problem of “Too hard” soundness proof in three ways. We
peel away the abstract interpretation lattice, because it is
used only to find the invariants, and we can use an axiomatic
semantics (Hoare Logic, Separation Logic) to check the ap-
plication of the invariants to the program. We peel away the
operational semantics, because we will use the Separation
Logic (an axiomatic semantics) as an abstraction layer.

The software architecture of our top-to-bottom proof is as
follows.

Static Analysis Algorithm
No soundness proof!Application-specific Axiomatic Semantics
specialization proofHoare Logic (Separation Logic)
soundness proofSource-language Operational Semantics
compiler correctnessMachine-language Operational Semantics

No soundness proof is necessary for the abstract inter-
pretation,because the invariants found by the shape analysis
are checked by a straightforward application of an analysis-
specific axiomatic semantics. It is that axiomatic semantics
that must be foundationally proved sound. This may be iden-
tically a standard Separation Logic, or it may be a set of
specialized inference rules proved as derived lemmas from a
general Separation Logic (this is the “specialization proof.”)
Such specialization proofs are not very difficult, even in a
machine-checked setting.

Compiler correctness. In a remarkable tour de force,
Leroy has demonstrated aproved correct optimizing com-
piler from C to machine language [10]. As part of this
demonstration, Leroy specified an operational semantics for
C minor, a high-level intermediate language for C; he speci-
fied an operational semantics for the PowerPC machine lan-
guage; and he built a machine-checked proof in Coq that the
compiler preserves behavior from one operational semantics
to another. Part of Leroy’s achievement is that he makes it
look like it’s not so difficult after all: now that he’s found the
right architecture for building verified compilers, everyone
will know how to do it.

This result establishes the bottom two layers of the soft-
ware architecture—as well as thecompiler-correctness proof
that connects them—for sequential programs.

Axiomatic to operational. Appel and Blazy [1] have spec-
ified a Separation Logic for C minor, and proved it sound

2 2008/3/27

with respect to the operational semantics. This establishes
thesoundness proofof the software architecture.

Because we are interested in the extension to concurrent
C programs, we used a small-step operational semantics
for C minor, in contrast to Leroy’s mixed big-step/small-
step semantics. However, Leroy is evolving his compiler-
correctness proof toward a small-step semantics, one layer
at a time, bottom-up. At present we can connect the Appel-
Blazy soundness proof to the Leroy correctness proof via a
small-step/big-step simulation result, proved in Coq.

Therefore, all the different layers are established in prin-
ciple to connect asequentialshape analysis such as Guo’s
or Yang’s to the operations of the machine language pro-
gram. A layered construction will make it possible to achieve
this connection with end-to-end machine-checked proofs.
The axiomatic semantics is an important abstraction layer,
as is the operational semantics is also an important layer. In
fact, within the verified compiler there are another half-a-
dozen layers of intermediate representation. Each phase of
the compiler is proved correct w.r.t. the operational seman-
tics of the intermediate representation above and below it.

Concurrency. But we want aconcurrentsystem. For ex-
ample, we want to use a shape analysis for concurrent pro-
grams, such as Gotsman’s [7].

O’Hearn [11] presented Concurrent Separation Logic as
an extension of Separation Logic for reasoning about shared-
memory concurrent programs with Dijkstra semaphores. It
provides substantial flexibility in the dynamic assignment of
resources to locks, and at the same time permits modular
reasoning. However, it does not allow first-class locks and
threads, that is, creating a lock at any address or forking a
thread to complete asynchronously.

We presented an extension of O’Hearn’s CSL to first-
class locks and threads [9], and independently Gotsman et
al. [6] presented a very similar CSL with first-class locks
and threads; this agreement is evidence that we’re both right.
Gotsman et al. present a by-hand soundness proof with re-
spect to an abstract model. However, we wanted to connect
the layers of the software architecture; that is, we want a con-
nection to the compilable operational semantics of C minor.

Here there was a nontrivial problem to solve. The author
of an optimizing compiler, such as the CompCert compiler
for C minor, wants to think of it as a compiler for a sequen-
tial programming language, with a library of concurrency
features (threads and locks). Sequential reasoning is conve-
nient not only when building the compiler, but when proving
it correct. Boehm [3] explains very clearly why this naive
model won’t work, and explains that a good specification is
needed for sequential languages with threads; but he doesn’t
provide the specification. We have done so, in a way that is
as friendly as possible to the compiler writer (and prover).
Our operational semantics for Concurrent C minor [9] pre-
serves as much sequentiality as possible, by talking about

permissions within a single threadinstead of about concur-
rency.

Our operational semantics is based on ideas from Con-
current Separation Logic: the resource invariant of each lock
is an explicit part of the operational model. There is a (clas-
sical logic) test for the satisfaction of the resource invariant
whenever releasing a lock; this means that the operational
semantics is nonconstructive. However, this model is very
well suited for programs that are accompanied by proofs in
CSL—either correctness proofs done interactively in a proof
assistant, or safety proofs done automatically by a shape
analysis such as Gotsman’s.

Thus, using a combination of Gotsman’s shape-analysis
algorithm with our soundness proof for CSL, we can achieve
the software proof architecture (sketched above) for con-
current programs as well as for sequential ones. Programs
proved safe or correct in the source language will have the
right behavior in machine language.

Low-level libraries. Not explicitly shown in the architec-
ture diagram, but certainly necessary, will be correctness
proofs for low-level assembly-language libraries for locks,
threads, memory allocation, and interrupt handling. Recent
work on machine-checked formal verification using on a
Hoare-logic-like framework specialized to this low level [4]
is very encouraging, as a way to implement and verify this
component.

Onward and upward (and downward).One can extend the
proof layers upward and downward. At the top, one can put
a more expressive concurrent programming language than
C-threads—for example, software transactional memory or
a monadic dependently typed functional language. At the
bottom, one can prove that the machine-language program
executes equivalently in weakly consistent memory models
(which will be true, because the CSL model does not permit
race conditions); and one can prove (machine-checked) the
correspondence of the ISA to the gates [2].

References
[1] Andrew W. Appel and Sandrine Blazy. Separation logic for

small-step C minor. In20th International Conference on
Theorem Proving in Higher-Order Logics (TPHOLs 2007),
2007.

[2] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinen-
bach, and Wolfgang J. Paul. Putting it all together: Formal
verification of the vamp.STTT Journal, 8(4-5):411–430,
August 2006.

[3] Hans-J. Boehm. Threads cannot be implemented as a
library. In PLDI ’05: 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
261–268, New York, 2005.

[4] Xinyu Feng, Zhong Shao, Yuan Dong, and Yu Guo. Certi-
fying low-level programs with preemptive threads. page (to
appear), 2008.

3 2008/3/27

[5] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or
a cyclic graph? a shape analysis for heap-directed pointers in
c. In Symposium on Principles of Programming Languages,
pages 1–15, 1996.

[6] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky,
and Mooly Sagiv. Local reasoning for storable locks
and threads. InProceedings 5th Asian Symposium on
Programming Languages and Systems (APLAS’07), 2007.

[7] Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly
Sagiv. Thread-modular shape analysis. InPLDI ’07: 2007
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2007.

[8] Bolei Guo, Neil Vachharajani, and David I. August. Shape
analysis with inductive recursion synthesis. InPLDI ’07:
2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 256–265, 2007.

[9] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa
Nardelli. Oracle semantics for concurrent separation logic.
In ESOP’08: 17th European Symposium on Programming,
page (to appear). Springer, April 2008.

[10] Xavier Leroy. Formal certification of a compiler back-end, or:
programming a compiler with a proof assistant. InPOPL’06,
pages 42–54, 2006.

[11] Peter W. O’Hearn. Resources, concurrency and local
reasoning.Theoretical Computer Science, 375(1):271–307,
May 2007.

[12] Hongseok Yand, Oukseh Lee, Cristiano Calcagno, Dino
Distefano, and Peter O’Hearn. On scalable shape analysis.
Technical Report RR-07-10, Queen Mary, Univ. of London,
November 2007.

4 2008/3/27

