Inverse Kinematics

COS 526: Advanced Computer Graphics

Kinematic Tree / Skeleton

- Collection of bodies and joints
 - Tree-structured: loop joints would break "tree-ness"
- Root joint
 - Position, rotation set by global transformation
- Root body
 - Other bodies relative to root
 - "Inboard" vs "outboard":towards vs. away from root

Inboard and Outboard

Inboard and Outboard

Joints

- Inboard body
- Outboard body

Body

- Inboard joint
- Outboard joint (may be several)

Bodies

Bodies arranged in a tree

- For now, assume no loops
- Body's parent (except root)
- Body's child (may have many)

Joints

Interior Joints (typically not 6 DOF)

- Pin rotate about one axis
- Ball arbitrary rotation
- Prism translate along one axis

Pin Joints

- Relative to coordinate system at inboard joint...
- Apply rotation about fixed axis
- Translate origin to outboard joint

Ball Joints

- Relative to coordinate system at inboard joint...
- Apply rotation about arbitrary axis
- Translate origin to outboard joint

Prism Joints

- Relative to coordinate system at inboard joint...
- Translate along fixed axis
- Translate origin to outboard joint

Forward Kinematics

Composite transformations down the hierarchy

Inverse Kinematics

Given

- · Root transformation
- · Initial configuration
- Desired end point location
- Find
 - Interior parameter settings

Inverse Kinematics

2-Segment Arm in 2D

Direct IK

Analytically solve for parameters (not general)

Difficult Issues

- Multiple configurations distinct in config space
- Or connected in config space

Infeasible Regions

Numerical Solution

- Start in some initial config. (previous frame)
- Define error metric (goal pos current pos)
- Compute Jacobian with respect to inputs
- Iterate with gradient descent, Newton's method, etc.
- General principle of goal optimization

Back to 2 Segment Arm

 $\frac{\partial p_z}{\partial \theta_1} = -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 + \theta_2)$ $\frac{\partial p_x}{\partial \theta_1} = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)$ $\frac{\partial p_z}{\partial \theta_2} = -l_2 \sin(\theta_1 + \theta_2)$ $\frac{\partial p_z}{\partial \theta_2} = +l_2 \cos(\theta_1 + \theta_2)$

Prism and Ball Joints in 3D...

Issues

- Jacobian not always invertible
 - Use an SVD and pseudo-inverse
- Iterative approach, not direct
 - The Jacobian is a linearization, changes
- Practical implementation
 - Analytic forms for prism, ball joints
 - Composing transformations
 - Or quick and dirty: finite differencing
 - Cyclic coordinate descent (each DOF one at a time)

Multiple Links

- IK requires Jacobian
 - Need generic method for building one
- Won't work to just concatenate matrices

$$\tilde{J} = [J_3 J_{2b} J_{2a} J_{1b}]$$

$$oldsymbol{d} = egin{bmatrix} d_3 \ d_{2\mathrm{b}} \ d_{2\mathrm{a}} \ d_{1\mathrm{b}} \end{bmatrix}$$
 $\mathrm{d} oldsymbol{p}
eq ilde{J} \cdot \mathrm{d} oldsymbol{d}$

Composing Transformations

Transformation from body to world

$$X_{0 \leftarrow i} = \prod_{j=1}^{i} X_{(j-1) \leftarrow j} = X_{0 \leftarrow 1} \cdot X_{1 \leftarrow 2} \cdots$$

Rotation from body to world

$$R_{0 \leftarrow i} = \prod_{j=1}^{i} R_{(j-1) \leftarrow j} = R_{0 \leftarrow 1} \cdot R_{1 \leftarrow 2} \cdot \cdots$$

Need to transform Jacobians to common coordinate system (WORLD)

$$J_{i,\mathsf{WORLD}} = R_{0 \leftarrow (i-1)} \cdot J_{i}$$

Inverse Kinematics: Final Form

$$J = \begin{bmatrix} R_{0 \leftarrow 2b} \cdot J_3(\theta_3, \boldsymbol{p_3}) \\ R_{0 \leftarrow 2a} \cdot J_{2b}(\theta_{2b}, X_{2b \leftarrow 3} \cdot \boldsymbol{p_3}) \\ R_{0 \leftarrow 1} \cdot J_{2a}(\theta_{2a}, X_{2a \leftarrow 3} \cdot \boldsymbol{p_3}) \\ J_1(\theta_1, X_{1 \leftarrow 3} \cdot \boldsymbol{p_3}) \end{bmatrix}^{\mathsf{T}}$$

$$oldsymbol{d} = egin{bmatrix} a_3 \ d_{2\mathrm{b}} \ d_{2\mathrm{a}} \ d_{1\mathrm{b}} \end{bmatrix}$$

Note: Each row in the above should be transposed....

$$\mathrm{d}\boldsymbol{p} = J \cdot \mathrm{d}\boldsymbol{d}$$

Issues

- Jacobian not always invertible
 - Use an SVD and pseudo-inverse
- Iterative approach, not direct
 - The Jacobian is a linearization, changes
- Practical implementation
 - Analytic forms for prism, ball joints
 - Composing transformations
 - Or quick and dirty: finite differencing
 - Cyclic coordinate descent (each DOF one at a time)

A Cheap Alternative

- Estimate Jacobian (or parts of it) w. finite differences
- Cyclic coordinate descent
 - Solve for each DOF one at a time
 - Iterate till good enough / run out of time

More complex systems

- More complex joints (prism and ball)
- More links
- Other criteria (center of mass or height)
- Hard constraints (e.g., foot plants)
- Unilateral constraints (e.g., joint limits)
- Multiple criteria and multiple chains
- Loops
- Smoothness over time
 - DOF determined by control points of curve (chain rule)

Practical Issues

- How to pick from multiple solutions?
- Robustness when no solutions
- Contradictory solutions
- Smooth interpolation
 - Interpolation aware of constraints

Prior on "good" configurations

